Biochemical composition of spring wheat grain under pre-sowing treatment with metabolically active substances
Abstract
Grain crops play a significant role in the agro-industrial complex of Ukraine, and spring wheat takes an important place in it. The biochemical composition of grain is a crucial indicator of its nutritional value, determining both crop quality and suitability for various types of processing. Purpose. The aim of the study was to investigate the effect of pre-sowing seed treatment with combinations of metabolically active substances on the biochemical composition of spring wheat grain. Methods. The theoretical framework of the research is based on an analysis of specialized scientific literature and generalization of existing studies, while the experimental part was conducted in accordance with established methodological guidelines for field trials. Results. Pre-sowing treatment of seeds with metabolically active substances enhanced the carotenoid content in the grain of spring wheat cultivar Panianka. The highest carotenoid accumulation levels were recorded in the variants with pre-sowing seed treatment using the EMPMg and EQ combinations – exceeding the control variant by 24.3 % and 24.0 %, respectively. The highest protein content was observed in the variant with pre- sowing seed treatment using the EMPMg combination, reaching 4.45 mg/g of fresh weight, which exceeded the control values by 24.3 %. Pre-sowing seed treatment of spring wheat with combinations of metabolically active substances contributed to the increase in starch content in the grain by 6.2–12.4 % compared to the control. The highest starch content in the grain of the Panianka variety was observed under pre-sowing seed treatment with the EMPMg combination. Conclusions. Pre-sowing seed treatment with combinations of metabolically active compounds EMPMg, EQ, and EMP contributed to the increase in protein, carotenoid, and starch content in the grain of spring wheat variety Panianka. Among the tested variants, the EMPMg combination has proved to be the most effective in improving the biochemical composition of spring wheat grain. The high efficiency of the above-mentioned treatments can be explained by the synergistic action of the components within the studied combinations and their optimal dosage during pre-sowing seed treatment.
References
2. Твердохліб О. В., Богуславський Р. Л. Видове різноманіття пшениці, напрямки і перспективи його використання. Збірник наукових праць Уманського національного університету садівництва. Умань, 2012. Вип. 80, ч. 1. С. 37-47.
3. Моргун В. В., Рибалка О. І. Стратегія генетичного поліпшення зернових злаків з метою забезпечення продовольчої безпеки, лікувально-профілактичного харчування та потреб переробної промисловості. Вісник Національної академії наук України. 2017. № 3. С. 54–64.
4. Сандецька Н. В., Дубровна О. В. Сучасний стан дослiджень якостi зерна пшеницi. Фізіологія рослин і генетика. 2025. Т. 57. № 3. С. 187–222.
5. Осокіна Н. М., Любич В. В., Новіков В. В., Лещенко І. А. Біохімічний склад зерна пшениці полби (Triticum Dicoccum (Schrank) Schuebl) залежно від генотипу. Агробіологія, 2020, № 1. С. 11–119.
6. Shravan Kumar, A. L. Jatav, C. L. Maurya, Ravi Dixit, Shailendra Pratap Singhb, Bhayankar, Jayant, Sanjay Babu, Deepu and Dhirendra Kumar. Evaluating the Effect of Seed Priming Treatments on Yield and Quality of Wheat Seed (Triticum aestivum L.) under Rainfed Conditions. Journal of Experimental Agriculture International. 2024. Volume 46, Issue 10, P. 73–80.
7. Larysa Semenko, Serhiy Veremeyenko, Anatoly Bykin, Larysa Kucher, Тymur Panchuk. Effectiveness of plant growth stimulants for winter wheat in the Left-Bank Forest-Steppe of Ukraine. Scientific Horizons, 2025, Vol. 28, No. 3. Р. 33–43.
8. Єщенко В. О., Копитко П. Г., Костогриз П. В., Опришко В. П. Основи наукових досліджень в агрономії: підручник / За ред. В. О. Єщенка. Вінниця: ПП «ТД «Едельвейс і К», 2014. 332 с.
9. Пшениця м’яка яра Панянка. URL: https://www.mip.com.ua/page/183-pshenytsya-m-yaka-yara-panyanka
10. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. “Protein measurement with the Folin phenol reagent”. Journal of Biological Chemistry, 1951. № 193(1).
11. Колісник Ю. С. Пігменти трави грициків звичай- них (Capsellabursa–pastoris) / Ю. С. Колісник, В. С. Кисличенко, В. Ю. Кузнєцова. Фармацевтичний жур- нал. 2013. № 1. С. 75–77.
12. Dien D. C., Mochizuki T., Yamakawa T. Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Prod. Sci. 2019. № 22. P. 530–545.
13. Foyer C. H., Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant. 2003. № 119.
14. Rozhnova N. A., Gerashchenkov G. A. Effect of ubiquinone 50 and viral infection on phytohemagglutinin activity in development of induced resistance in tobacco plants. Izv. Akad. Nauk Ser. Biol. 2008. № 35. P. 442–447.
15. Cho J.-Y., Moon J.-H., Seong K.-Y., Park K.-H. Antimicrobial Activity of 4-Hydroxybenzoic Acid and trans 4-Hydroxycinnamic Acid Isolated and Identified from Rice Hull. Bioscience, Biotechnology, and Biochemistry. 2008. № 62(11). Р. 2273–2276.
16. Roje S. S-Adenosyl-L-methionine: Beyond the universal methyl group donor. Phytochemistry, 2006. № 67. P. 1686–1698.
17. Azizi K., Yaghobi M., Hidary S., Chaeichi M. R., Roham R. Effects of different methods of magnesium sulphate application on qualitative and quantitative yield of lentil (Lens culinaris Medik.) cultivars under Khorramabad climatic conditions of Iran. Res. Crops, 2011. № 12. P. 103–111.

This work is licensed under a Creative Commons Attribution 4.0 International License.




