THE EFFECTIVENESS OF THE USE OF MICROBIAL PREPARATIONS OF DESTRUCTORS ON PLANT RESIDUES ON THE PROCESS OF THEIR MINERALIZATION AFTER HARVESTING

Keywords: biodestructor, plowing, mineralization, soil, straw, biomass, crop rotation, winter wheat.

Abstract

Purpose. Is to evaluate the effectiveness of the use of biodegraders in interaction with various methods of basic tillage with their adaptation to the arid natural and climatic conditions of the south of ukraine with the aim of wide implementation of the development in production. Research methods. The research was carried out during 2016–2020 at the research field of the institute of irrigated agriculture of the national academy of sciences and at the se “pioneer” agricultural research institute of the national academy of sciences of the russian academy of sciences. A two-factor experiment (factor a – culture of the crop rotation link, b – drug) was established by the method of randomized split blocks. The repetition is four times. Research results. In the favorable weather conditions of 2016 and 2019, with the total amount of precipitation for the period “april – september” at the level of 277.7 and 304.3 mm against the background of a moderate temperature regime, a steady increase in the intensity of the production process in the studied crops of crop rotation and improvement of decomposition was recorded of organic matter when using destructor drugs. On the territory of the studied crop rotation, after harvesting the marketable part of the crop, chopped biomass of stems and stubble remains on the field. Research on earning and decomposition of plant residues of crops was carried out in the crop rotation chain: winter wheat – sorghum – spring barley – sunflower – black steam. After harvesting, winter wheat leaves the largest biomass in the field – 4.66-5.24 t/ha. The smallest amount remains after spring barley – 2.35–2.50 t/ha. During the entire rotation of the crop rotation link, the most non-marketable plant biomass remained on the field after harvesting under the conditions of plowing – 15.88 t/ha. There were fewer of them in variants of tillage without shelves – by 7.6% for deep and by 13.4% for shallow. Biomass cultivated in the soil has a different chemical composition and different amounts of nutrients are obtained with it, which has a direct impact on soil fertility, in particular, on the content of humus. The largest amount of nitrogen (23.3–27.9 kg/ha) and phosphorus (12.3–147.8 kg/ha) enters the soil after harvesting the marketable part of the crop with sorghum biomass, and the smallest – with spring barley biomass (12 .2–13.0 kg/ha) and (6.8–7.2 kg/ha). In general, 80.9–94.5 kg/ha of nitrogen, 39.0–45.5 kg/ha of phosphorus, and 226.1–269.1 kg/ha of potassium were added to the soil during the rotation of the crop rotation link with plant residues by-products. The number of these elements was the largest under plowing conditions, and the smallest – under plowless shallow tillage. Conclusions. The highest speed of straw decomposition was under the conditions of plowing with deep plowing and intensive mixing with the soil – 50.0%, on average by factor. The destruction of straw took place at a much slower pace under the conditions of plowless shallow tillage – 42.7% in 90 days. The rate of destruction of barley straw increased the most when using organic balance – by 80.1% compared to the control in the average factor. The use of destructors significantly accelerated the mineralization of straw – by 65.1–92.7%. The use of plowing in combination with a biodestructor ensured the maximum content of humus – 2.40%, which is associated with the improvement of the activity of microorganisms due to better distribution over the plowed layer, improvement of the water and nutrient regime of the soil, and the presence of a larger amount of organic matter.

References

1. Мельник М. А., Жужа В. В., Сидоренко О. І., Шукайло С. П., Вожегова Р. А., Малярчук М. П., Коваленко А. М., Коковіхін С. В. Еколого-агрохімічний стан сільськогосподарських земель Херсонської області, проблеми і шляхи їх вирішення: монографія. Херсон: ОЛДІ ПЛЮС, 2020. 350 с.
2. Dias G. A., Rocha R. H. C., Araújo J. L., De Lima J. F., Guedes W. A. Growth, yield, and postharvest quality in eggplant produced under di erent foliar fertiliser (Spirulina platensis) treatments. Semin. Cienc. Agrar. 2016. Vol. 37. P. 3893–3902.
3. Odegard I. Y. R., Van der Voet E. The future of food – Scenarios and the effect on natural resource use in agriculture in 2050. Ecol. Econ. 2014. Vol. 97. Р. 51–59.
4. Nabti E., Jha B., Hartmann A. Impact of seaweeds on agricultural crop production as biofertiliser. Int. J. Environ. Sci. Technol. 2017. Vol. 14. Р. 1119–1134.
5. Zhenga B., Zhangb X., Wanga Q., Lic W., Huanga M., Zhoua Q., Caia J., Wanga X., Caoa W., Daia T., Jianga D. Increasing plant density improves grain yield, protein quality and nitrogen agronomic efficiency of soft wheat cultivars with reduced nitrogen rate. Field Crops Research. 2021. Vol. 267. Р. 108–145.
6. Schadera C., Heidenreicha A., Kadzerea I., Egyirb I., Muriukic A., Bandanaabi J., Clotteyb J., Ndungucd J., Grovermanna C., Lazzarinia G., Blockeela J., Borgemeisterd C., Mullerae A., Kabif F., Fiaboegh K., Adamteya N., Hubera B., Nigglia U., Stolzea M. How is organic farming performing agronomically and economically in sub-Saharan Africa? Global Environmental Change. 2021. Vol. 70. Р. 102.
7. Young M. D., Ros G. H., W. de Vries. Impacts of agronomic measures on crop, soil, and environmental indicators: A review and synthesis of meta-analysis. Agriculture, Ecosystems and Environment. 2021. Vol. 319. Р. 5–16.
8. Bruna J., Jeuffroya M.-H., Pénicaudb C., Cerfc M., Meynardd J.-M. Designing a research agenda for coupled innovation towards sustainable agrifood systems. Agricultural Systems. 2018. Vol. 191. Р. 103–143.
9. Smetana S. Chances and challenges of the biologization of the economy of rural areas. Current Opinion in Green and Sustainable Chemistry. 2020. Vol. 23. Р. 46–49.
10. Ronga D., Biazzi E., Parati K., Carminati D., Carminati E., Tava A. Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy. 2019. Vol. 9(4). Р. 192. URL: https://doi.org/10.3390/agronomy9040192.
11. Dudchenko V., Markovska O., Sydiakina O. Soybean Productivity in Rice Crop Rotation Depending on the Impact of Biodestructor on Post-Harvest Rice Residues. Ecological Engineering & Environmental Technology. 2021. Vol. 22(6). Р. 114–121. URL: https:// doi.org/10.12912/27197050/141466.
12. Barciszewskia J., Ciemerychb M. A., Twardowskia T. Novel insights and innovations in biotechnology towards improved quality of life. New Biotechnology. 2019. Vol. 49. Р. 58–65.
13. Schrödera P., Sauvêtrea A., Gnädingera F., Pesaresib P., Chmelikovác L., Doğand N., Gerle G., Gökçef A., Hamelg C., Millanh R., Perssoni T., Ravnskovj S., Rutkowskak B., Schmidh T., Szulck W., Teodosiul C., Terzim V. Discussion paper: Sustainable increase of crop production through improved technical strategies, breeding and adapted management – A European perspective. Science of The Total Environment. 2019. Vol. 678. Р. 146–161.
14. Rajana S. S. S., Upsdellb M. P. Chapter Four – Environmentally friendly agronomically superior alternatives to chemically processed phosphate fertilizers: Phosphate rock/sulfur/Acidithiobacillus sp. combinations. Advances in Agronomy. 2021. Vol. 167. Р. 183–245.
15. Wua P., Zhaob G., Liua F., Ahmada S., Shangzhong T. F., Jianjun L., Dangb Z. Y., Wangb L., Wangb S., Chengb W., Caia T. (2021) Agronomic system for stabilizing wheat yields and enhancing the sustainable utilization of soil: A 12-year in-situ rotation study in a semi-arid agro-ecosystem. Journal of Cleaner Production. 2021. Vol. 329. Р. 129.
16. Yaoabc Z., Zhangac W., Wangd X., Zhangd L., Zhanga W., Liuc D., Chen X. Agronomic, environmental, and ecosystem economic benefits of controlled-release nitrogen fertilizers for maize production in Southwest China. Journal of Cleaner Production. 2021. Vol. 312. Р. 127.
17. Das G. G. Food–feed–biofuel trilemma: Biotechnological innovation policy for sustainable development. Journal of Policy Modelling. 2017. Vol. 39(3). Р. 410–442.
18. Chen L., Yuan X.-J., Lі J.-F., Wang S.-R., Dong Z.-H., Shao T. Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitro gas production kinetics and digestibility of wholecrop corn based total mixed ration silage. Journal of Integrative Agriculture. 2017. Vol. 16(7). Р. 1592–1600. 19. Carlson R. Estimating the biotech sector’s contribution to the US economy. Nat Biotechnol. 2016. Vol. 34. Р. 247–255.
20. Jiao X.-Q., Mongol N., Zhang F.-S. The transformation of agriculture in China: Looking back and looking forward. Journal of Integrative Agriculture. 2018. Vol. 17(4). Р. 755–764.
21. Lokkoa Y., Heijdeb M., Schebestaa K., Scholtèsa P., Montagub M. V., Giacca M. Biotechnology and the bioeconomy – Towards inclusive and sustainable industrial development. New Biotechnology. 2018. Vol. 40. Р. 5–10.
22. Chandra Н., Kumari Р., Bisht R., Prasad R., Yadav S. Plant growth promoting Pseudomonas aeruginosa from Valeriana wallichii displays antagonistic potential against three phytopathogenic fungi. Molecular Biology Reports. 2020. Vol. 47. Р. 6015–6026.
23. Державний реєстр пестицидів і агрохімікатів, дозволених до використання в Україні. https://mepr. gov.ua/upravlinnya-vidhodamy/derzhavnyj-reyestr-pestytsydiv- i-agrohimikativ-dozvolenyh-do-vykorystannya- v-ukrayini/
24. Ушкаренко В. О., Нікішенко В. Л., Голобородько С. П., Коковіхін С. В. Дисперсійний і кореляційний аналіз результатів польових дослідів: монографія. Херсон: Айлант, 2009. 372 с.
25. Ушкаренко В. О., Вожегова Р. А., Голобородько С. П., Коковіхін С. В. Методика польового досліду (зрошуване землеробство). Херсон: Грінь Д.С., 2014. 448 с.
Published
2023-08-30
Section
MELIORATION, ARABLE FARMING, HORTICULTURE