Microbiological Potential and Cellulolytic Activity of Grey Forest Soil under Systematic Green Manure Use of Oilseed Radish

Keywords: microbiocenosis, microbiological potential, soil microbiota, cellulose, cellulose decomposition

Abstract

Purpose. The aim of the research was to determine the effect of a long-term technological rotation cycle with systematic application of oil radish green manure on the structure of the microbiological complex and the cellulolytic activity of grey forest soil. Methods. The research was conducted from 2014 to 2025 at the experimental field of Vinnytsia National Agrarian University on grey forest soils with medium fertility potential. The experiment was replicated four times. The arrangement of variants was systematic in two tiers. The study aimed to assess the effectiveness and feasibility of long-term periodic (once every two years on the same field) green manuring of intermediate (summer) crops in crop rotation without including other cruciferous species, over a 12-year study cycle, compared with a control variant without green manuring and additional fertilization. Results. The technological feasibility of regulation aimed at optimizing the structure of ecological and functional groups of the grey forest soil microbiota was established, with an increase in the proportion of beneficial species by up to 30 %. A significant rise in cellulolytic activity was observed in the 0–30 cm soil profile, with an average annual gradient of 2.13 %/year and 2.38 %/year according to the functional criterion of linen tissue decomposition degree after 30 and 60 days of assessment, respectively, under consistent periodic use of oilseed radish green manure in the summer (intermediate) cultivation variant. Significant differences in the changes of soil cellulolytic activity were also identified under the green manure treatment compared with the control, with maximum values observed at a soil depth of 14–23 cm. Conclusions. The long-term use of oil radish as green manure in crop rotation proved to be effective in optimizing the microbiotic complex of grey forest soils. An improvement in the soil microbiocenosis structure was recorded: the total microbial biomass increased by up to 50 % over the full study cycle, while the proportion of beneficial microbiota grew by up to 30 % compared to the absolute (initial) control.

References

1. Hemati A., Nazari M., Asgari Lajayer B., Smith D. L., Astatkie T. Lignocellulosics in Plant Cell Wall and Their Potential Biological Degradation. Folia Microbiology. 2022. Vol. 67. P. 671–681.
2. Datta R. Enzymatic degradation of cellulose in soil: a review. Heliyon. 2024. Vol. 10. e24022.
3. Singh R., Pal D. B., Alkhanani M. F., Almalki A. H., Areeshi M. Y., Haque S., Srivastava N. Prospects of Soil Microbiome Application for Lignocellulosic Biomass Degradation: An Overview. Science of the Total Environment. 2022. Vol. 838. 155966.
4. Zhang M., Dang P., Haegeman B., Han X., Wang X., Pu X., Qin X., Siddique K. H. M. The Effects of Straw Return on Soil Bacterial Diversity and Functional Profiles: A Meta-Analysis. Soil Biology and Biochemistry. 2024. Vol. 195. 109484.
5. López-Mondéjar R.,A lgora C., Baldrian P. Lignocellulolytic Systems of Soil Bacteria: A Vast and Diverse Toolbox for Biotechnological Conversion Processes. Biotechnology Advances. 2019. Vol. 37. 107374.
6. Dadwal A., Sharma S., Satyanarayana T. Diversity in Cellulose-Degrading Microbes and Their Cellulases: Role in Ecosystem Sustainability and Potential Applications. In Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications; Satyanarayana, T., Das, S. K., Johri, B. N., Eds.; Springer: Singapore, 2019. P. 375–402.
7. Kovalzhy N. I. Aspects of formation of groups of microorganisms of typical chernozem in the growing of garden strawberry under different fertilization systems and drip irrigation. Agriciltural Microbiology. 2021. Vol. 34. P. 86–94.
8. Rieznik S., Havva D., Dehtiarov V., Pachev I. Dynamics of the Number of Functional Groups of Microorganisms under Different Farming Systems. Journal of Mountain Agriculture on the Balkans. 2023. Vol. 26. № 1. P. 549–567.
9. Demyanyuk O. S., Patyka V. P., Sherstoboeva О. V., Bunas A. A. Formation of the structure of microbio- cenoses of soils agroecosystems depending on trophic and hydrothermic factors Biosystems diversity. 2018. Vol. 26 (2). Р. 103–110.
10. Volkohon V. V., Pyrig O. V., Volkohon K. I., Dimova S. B. Methodological aspects of determining the trend of organic matter mineralization synthesis processes in croplands. Agricultural Science and Practice. 2019. Vol. 6. № 1. P. 3–9.
11. Dehtiarova Z. The effect of short–term crop rotation with different proportions of sunflower on cellulolytic activity of the soil. Soil Science Annual. 2022. Vol. 73. № 4. 156097.
12. Rieznik S., Havva D., Butenko A., Novosad K. Biological activity of chernozems typical of different farming practices. Agraarteadus. 2021. Vol. 32. № 2. P. 307–313.
13. Kovalzhy N., Rieznik S., Butenko A., Havva D., Degtyarjov V., Hotvianska A., Bondarenko O., Nozdrina N. Activity of cellulose–degrading microorganisms in typical chernozem under different fertilization systems of strawberries (fragaria). Agriculture and Forestry. 2024. Vol. 70. № 3. P. 105–113.
14. Rieznik S., Havva D., Chekar O. Enzymatic activity of typical chernozems under the conditions of the organic farming systems. Scientific Papers. Series A. Agronomy. 2021. Vol. LXIV(2). P. 114–119.
15. Greff B., Szigeti J., Nagy Á., Lakatos E., Varga L. Influence of Microbial Inoculants on Co-Composting of Lignocellulosic Crop Residues with Farm Animal Manure: A Review. Environment Managment. 2022. Vol. 302. 114088.
16. Гангур В. В., Сахацька В. М. Мікробіологічна активність ґрунту за різних способів обробітку. Вісник ПДАА. 2019. № 4. С. 13–19.
17. Ma D., Chen H., Liu D., Feng C., Hua Y., Gu T., Guo X., Zhou Y., Wang H., Tong G., Li H., Zhang K. Soil-derived cellulose-degrading bacteria: screening, identification, the optimization of fermentation conditions, and their whole genome sequencing. Microbiology and Molecular Biology Reviews. 2024. Vol. 15. 1409697.
18. Коломієць М. Параметрична модель сталої родючості сірого лісового легкосуглинкового ґрунту. Вісник аграрної науки. 2022. № 1. С. 5–13.
19. Campano C., Balea A., Blanco A., Negro C. Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose. 2015. Vol. 23. P. 57–91.
20. Lei B., Wang J., Yao H. Ecological and environmental benefits of planting green manure in paddy fields. Agriculture. 2022. Vol. 12. № 2. 223.
21. Сайко В. Ф. Особливості проведення досліджень з хрестоцвітими олійними культурами. К. : «Інститут землеробства НААН» 2011. 76 с.
22. Tsytsiura Y. Ecological adaptive tactics of oil radish root formation at different terms of green manure application. Journal of Ecological Engineering. 2025. Vol. 26. № 9. P. 420–439.
23. Tsytsiura Y. Potential of oilseed radish (Raphanus sativus l. var. oleiformis Pers.) as a multi-service cover crop (MSCC). Agronomy Research. 2024b. Vol. 22. № 2. P. 1026–1070.
24. Composts & Fertilisers. 2023. NPK Nutritional Values of Animal Manures & Compost Etc. Available online: https://www.allotment-garden.org/composts-fertilisers/npk-nutritional-values-animal-manures-compost/#google_vignette (date of application 14.10.2025 р.).
25. Brown C. Available Nutrients and Value for Manure from Various Livestock Types. Factsheet № 21077. AGDEX 538. Ministry of Agriculture, Food and Rural Affairs. Queen’s Printer for Ontario. 2021. 10 p.
26. Іутинська Г. О. Ґрунтова мікробіологія. Київ : Арістей, 2006. 284 с.
27. Щуковський М. А., Величко Л. Л., Новосад К. Б., Казу та О. М., Василєва Л. І., Тихоненко Д. Г. Мікробіологія ґрунту. Посібник для лабораторних і практичних занять. Харків : ХНАУ ім. В. В. Докучаєва. 2002. 136 с.
28. Волкогон, В. В., Надкерчна, О. В., Токмакова, Л. М., Мельничук, Т. М. та Чайковська, Л. О. Експериментальна мікробіологія ґрунтів: монографія. Київ : Аграрна наука. 2010. 464 с.
29. Rapa P., Beermann A. Bacterial cellulase. In: Biosyntesis and Biodegradation of Cellulose. Haigler CH, Weimer PJ, editors. New York : Marcel Dekker. 1991. P. 535–599.
30. Wong J. Handbook of Statistical Analysis and Data Mining Applications (Second Edition). Academic Press. 2018. 880 p.
31. Chang C., Guo Y., Tang K., Hu Y., Xu W., Chen W., McLaughlin N., Wang Z. Straw from Different Crop Species Recruits Different Communities of Lignocellulose-Degrading Microorganisms in Black Soil. Microorganisms 2024. Vol. 12. 938.
32. Karbivska U. M. Сhange of indexes of fertility and cellulose activity of soil for growing of cereal grassland depending on a fertilizer. Plant and Soil Science. 2019. Vol. 11. № 1. P. 33–41.
33. Бунас А. А., Чабанюк Я. В., Лобова О. В. Різноманіття бактеріальних ізолятів ризосфери рослин ріпаку. Агроекологічний журнал. 2014. № 2. С. 91–95.
34. Москалевська Ю. П. Біологічна активність та мікробна трансформація органічної речовини чорнозему типового за різних систем землеробства. Збалансоване природокористування. 2014. № 2. С. 68–72.
35. Herman J., Moorhead D., Berg B. The Relationship between Rates of Lignin and Cellulose Decay in Aboveground Forest Litter. Soil Biology and Biochemistry. 2008. Vol. 40. P. 2620–2626.
36. Pollegioni L., Tonin F., Rosini E. Lignin-degrading enzymes. The FEBS Journal. 2015. Vol. 282. P. 1190–1213.
37. Bao W. Screening and genomic analysis of a lignocellulose degrading bacterium. Acta Microbiologica Sinica. 2016. Vol. 56. P. 765–777.
38. Datsko O. M., Zakharchenko E. A. Activity of cellulose– decomposing bacteria under different soil tillage and pre–sowing inoculation of corn. Bulletin of Sumy National Agrarian University. The Series: Agronomy and Biology. 2023. Vol. 51. № 1. P. 28–36.
39. Mahanta K., Jha D. K., Rajkhowa D. J., Kumar M. Isolation and evaluation of native cellulose degrading microorganisms for efficient bioconversion of weed biomass and rice straw. Journal of environmental biology. 2014. Vol. 35. № 4. P. 721–725.
40. Bhagat S. A., Kokitkar S. S. Isolation and identification of bacteria with cellulose-degrading potential from soil and optimization of cellulase production. Journal of Applied Biology and Biotechnology. 2021. Vol. 9. P. 154–161.
Published
2025-12-14
Section
MELIORATION, ARABLE FARMING, HORTICULTURE