Effect of microbiological preparation EM Agro on green mass formation of dill cultivar Alligator under drip irrigation conditions
Abstract
The article investigates an important issue of enhancing productivity of dill cultivar Alligator under drip irrigation conditions typical for the Northern Steppe zone of Ukraine, particularly in the Kirovohrad region. Objective. To determine the effect of microbiological preparation EM Agro on growth, development parameters and green mass accumulation of dill cultivar Alligator under drip irrigation conditions for developing an environmentally safe technology to increase productivity of aromatic herb crops. Methods.Field experiments were conducted during 2023–2024 at Central Ukrainian National Technical University on typical heavy-loamy chernozem. The experiment was established using randomized complete block design with four replications and plot size of 10 m². The experimental scheme included five treatments: control (drip irrigation), seed treatment with EM Agro solution (1:1000), seed treatment + single fertigation (1:500), seed treatment + double fertigation, triple fertigation through irrigation system. Drip irrigation system was used maintaining soil moisture at 80–85 % field capacity. Biometric measurements were conducted, yield was determined, product quality parameters were assessed (dry matter content, ascorbic acid, essential oils, nitrates). Statistical processing was performed using analysis of variance. Results. Application of EM Agro preparation provided statistically significant improvement of all biometric parameters. The most effective treatment was seed treatment combined with double fertigation, which ensured plant height increase to 30,1 cm (24,4 % increase), leaf number to 17,3 per plant (39,5 %), rosette diameter to 24,2 cm (30,8 %) and plant weight to 23,8 g (41,7 %) compared to control. Maximum green mass yield of 240,5 g/m² was obtained with optimal application scheme, exceeding control by 70,1 g/m² or 41,1 %. Quality characteristics improved: dry matter content increased by 20,9 %, ascorbic acid by 29,4 %, essential oils by 50 %. Nitrate content reduction by 23,4 % is important for enhancing product ecological safety. Economic analysis showed the highest profitability of additional costs at 687,6 % with net profit of 6,12 UAH/m². Findings. Microbiological preparation EM Agro combined with drip irrigation creates synergistic effect, significantly enhancing productivity and quality of dill green mass. The optimal scheme involves seed treatment (1:1000) and double fertigation (1:500) on 10 th and 25 th days after emergence. The technology is highly profitable and environmentally safe, allowing its recommendation for wide implementation in leafy vegetable production.
References
2. Ndona R.K., Friedel J.K., Spornberger A., Rinnofner T., Jezik K. Effective micro-organisms (EM): An effective plant strengthening agent for tomatoes in protected cultivation. Biol. Agric. Hortic. 2011; 27: 189–203. doi: 10.1080/01448765.2011.9756647.
3. Rezende A.M.F., Tomita C.K., Uesugi C.H. Cupric fungicides, benzalconium chlorides and liquid bioactive compost (Bokashi): Phytotoxicity and control of guava bacterial blight caused by Erwinia psidii. Trop. Plant Pathol. 2008;33:288–294. doi: 10.1590/ S1982-56762008000400005.
4. Shin K., van Diepen G., Blok W., van Bruggen A.H. Variability of Effective Micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens. Crop Prot. 2017;99:168–176. doi: 10.1016/j. cropro.2017.05.025.
5. Safwat, S.M., Matta, M.E. Environmental applications of Effective Microorganisms: a review of current knowledge and recommendations for future directions. J. Eng. Appl. Sci. 68, 48 (2021). https://doi.org/10.1186/ s44147-021-00049-1
6. Kumar B.L, Gopal D.V. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech. 2015 Dec;5(6):867-876. doi: 10.1007/s13205-015-0293-6. Epub 2015 Apr 4. PMID: 28324402; PMCID: PMC4624139.
7. Andrade, J.C., Almeida, D., Domingos, M., Seabra, C.L., Machado, D., Freitas, A.C., Gomes, A.M., 2020. Commensal obligate anaerobic bacteria and health: production, storage, and delivery strategies. Frontiers in bioengineering and biotechnology. 8, 550. https://doi.org/10.3389/fbioe.2020.00550
8. Lyu L, Matheson S, Fleck R, Torpy FR, Irga PJ. Modulating phytoremediation: How drip irrigation system affect performance of active green wall and microbial community changes. J Environ Manage. 2024 Nov; 370: 122646. doi: 10.1016/j.jenvman.2024.122646. Epub 2024 Oct 4. PMID: 39366234.
9. Li N, Jiang L, Li X, Su Y. Enhancing phytoremediation of arsenic-contaminated soil by agronomic practices (drip irrigation and intercropping): Influence of soil organic matter. Sci Total Environ. 2023 Sep 15;891:164463. doi: 10.1016/j.scitotenv.2023.164463. Epub 2023 May 27. PMID: 37245811.
10. Jiang L, Li N, Li X, Murati H, Hu Y, Su Y. Phytoremediation of copper-contaminated soils by drip or sprinkling irrigation coupled with intercropping. Environ Sci Pollut Res Int. 2023 Jul;30(33):81303-81313. doi: 10.1007/s11356-023-28153-0. Epub 2023 Jun 14. PMID: 37316625.
11. D’Incau E, Lépinay A, Capiaux H, Gaudin P, Cornu J-Y, Lebeau T (2022) Effect of Pseudomonas putida-producing pyoverdine on copper uptake by Helianthus annuus cultivated on vineyard soils. Sci Total Environ 809: 152113. https://doi.org/10.1016/j.scitotenv.2021.152113.
12. Wu M., Ma C., Wang D., Liu H., Zhu C., Xu H. Nutrient drip irrigation for refractory hydrocarbon removal and microbial community shift in a historically petroleum-contaminated soil. Sci Total Environ. 2020 Apr 15; 713: 136331. doi: 10.1016/j.scitotenv.2019.136331. Epub 2019 Dec 28. PMID: 31955070.
13. Liu H, Wu M, Gao H, Yi N, Duan X. Hydrocarbon transformation pathways and soil organic carbon stability in the biostimulation of oil-contaminated soil: Implications of 13C natural abundance. Sci Total Environ. 2021 Sep 20; 788: 147580. doi: 10.1016/j.scitotenv.2021.147580. Epub 2021 May 7. PMID: 34034175.
14. Purnomo A.S., Putra S.R., Putro H.S., Hamzah A., Rohma N.A., Rohmah A.A., Rizqi H.D., Asranudin, Tangahu B.V., Warmadewanthi I.D.A.A., Shimizu K. The application of biosurfactant-producing bacteria immobilized in PVA/SA/bentonite bio-composite for hydrocarbon-contaminated soil bioremediation. RSC Adv. 2023 Jul 13;13 (31): 21163-21170. doi: 10.1039/ d3ra02249h. PMID: 37456549; PMCID: PMC10339068.
15. Пігуль В. М., Дейнека В. І., & Ващенко В. П. Методика польового досліду в овочівництві і баштанництві. Харків: Стиль-Іздат. 2018, 270 с.
16. Дослідна справа в агрономії. Книга друга. Статистична обробка результатів агрономічних досліджень: навчальний посібник / Рожков А. О., Каленська С. М., Пузік Л. М. та ін. Х. : Майдан, 2016. 298 с.
17. Khaliq A., Abbasi M. K. and Hussain T. Effects of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan. Bioresource Technology. 2006, 97: 967–972.
18. Etefa O. F., Forsido S. F. & Kebede M. T. (). Postharvest Loss, Causes, and Handling Practices of Fruits and Vegetables in Ethiopia: Scoping Review. Journal of Horticultural Research. 2022, 30 (1), 1–10. https://doi.org/10.2478/johr-2022-0002.
19. Ковальов М. М. Вплив параметрів кліматозабезпечення на вирощування мікрозелені в умовах плівкової теплиці. Таврійський науковий вісник: Науковий журнал. Сільськогосподарські науки. Видавничий дім «Гельветика». 2022, Вип. 126 С. 153–162. DOI https://doi.org/10.32851/2226-0099.2022.126.21.
20. Ковальов М. М. Вплив іонного складу поживного середовища на вирощування ремонтантних сортів полуниці в гідропонних колонах Таврійський науковий вісник: Науковий журнал. Сільськогосподарські науки. Видавничий дім «Гельветика», 2020. Вип. 116, С. 104–111. DOI https://doi.org/10.32851/2226-0099.2020.116.1.13.




