Optimization of sugar beet sowing dates to increase yield in short-rotation crop rotations in the Western Forest-Steppe of Ukraine
Abstract
Introduction. Sugar beet (Beta vulgaris L.) is a cornerstone crop for Ukraine’s agro-industrial sector, with the Western Forest-Steppe being a major production zone.Intensified farming practices and the use of short-rotation crop systems (2–3 years return period) increase phytosanitary risks and reduce agroecosystem resilience. One of the most critical factors affecting sugar beet productivity is sowing date, which determines crop establishment, yield formation, and sugar accumulation. Despite global studies, regional responses of sugar beet to different sowing times combined with soil variability in the Western Forest-Steppe of Ukraine remain insufficiently studied. Methods. Field experiments were conducted during 2018–2024 under production conditions of PE “Zakhidnyi Buh” on soils of different genesis: highly productive chernozems, carbonate, and sandy soils. Five sowing periods were tested: before April 1, April 1–10, April 10–20, April 20 – May 1, and after May 1. Parameters included sugar yield (t/ha) and relative productivity (%). Statistical analysis was performed using variance analysis and regression modeling, with determination of R² to assess the fit of yield–sowing date dependence. Results. The most productive sowing period was April 10–20. During this period, the average sugar yield reached 10.9 t/ha across the enterprise, equivalent to 105% relative productivity. On chernozems, maximum sugar yield was 11.0 t/ha (107%), indicating strong stability regardless of sowing date. On carbonate and sandy soils, yields ranged from 9.2 t/ha (96%) under early sowings to 9.5 t/ha (83%) under late sowings, with a peak of 10.9 t/ha (99%) in the third decade of April. Regression modeling confirmed a parabolic dependence of yield on sowing dates with a distinct maximum in mid-April (R² = 0.59–0.73).Conclusions. The optimal sowing period for sugar beet in the Western Forest-Steppe of Ukraine is April 10–20, ensuring maximum sugar yield and relative productivity.Productive chernozems guarantee yield stability regardless of sowing dates, whereas on carbonate and sandy soils it is crucial to avoid both early and late sowings, which lead to significant reductions in productivity. These results highlight the importance of adjusting sugar beet sowing strategies to soil type and climatic variability, contributing to sustainable intensification of beet production.
References
2. Bodner G., Alsalem M. Sugar beet rooting pattern mediates stomatal and transpiration responses to progressive water stress. Agronomy. 2023. Vol. 13(10). 2519. DOI: https://doi.org/10.3390/agronomy13102519.
3. Deumelandt T., Ladewig E., Strecker T., Märländer B. Crop rotational effects on yield formation in current sugar beet production. Frontiers in Plant Science. 2018. Vol. 9. P. 231. DOI: https://doi.org/10.3389/fpls.2018.00231.
4. El-Hawary M. A., Elsayed M. H., Abdelateef I. A. Effect of sowing dates on root and sugar yield of some sugar beet varieties at different locations. Egyptian Journal of Applied Sciences. 2024. Vol. 39(9–10). P. 1–15.
5. Fenz S., Neubauer T., Heurix J., Friedel J. K., Wohlmuth M. L. AI and data driven pre crop values and crop rotation matrices. European Journal of Agronomy. 2023. Vol. 150. Article 126949. DOI: https://doi.org/10.1016/j.eja.2023.126949.
6. Gazdík Z., Koprna R., Lojková L., Cerkal R. Overview of techniques for sustainable sugar beet production. International Journal of Plant Production. – 2025. P. 1–7. –DOI: https://doi.org/10.1007/s42106-025-00354-2.
7. Götze P., Rücknagel J., Wensch-Dorendorf M., Märländer B., Christen O. Crop rotation effects on yield, technological quality and yield stability of sugar beet after 45 trial years. European Journal of Agronomy. 2017. Vol. 82. P. 50–59. DOI: https://doi.org/10.1016/j.eja.2016.10.003.
8. Guo C., Yang C., Fu J., Song Y., Chen S., Li H., Ma C. Effects of crop rotation on sugar beet growth through improving soil physicochemical properties and microbiome. Industrial Crops and Products. 2024. Vol. 212. Article 118331. – DOI: https://doi.org/10.1016/j.indcrop.2024.118331.
9. Hlushchenko L. D., Olepir R. V., Len O. I., Samoilenko O. A. The yield of sugar beet in constant sowing and crop rotation. Bioenergy. 2020. Vol. 2(16). P. 34–37. DOI: https://doi.org/10.47414/be.2.2020.225004.
10. Hurisso T. T., Norton J. B., Mukhwana E. J., Norton U. Soil organic carbon and nitrogen fractions and sugar beet sucrose yield in furrow-irrigated agroecosystems. Soil Science Society of America Journal. 2015. Vol. 79(3). P. 876–888. DOI: https://doi.org/10.2136/sssaj2015.02.0073.
11. Jaggard K. W., Qi A., Ober E. S. Possible changes to arable crop yields by 2050. Philosophical Transactions of the Royal Society B. 2010. Vol. 365(1554). P. 2835–2851. DOI: https://doi.org/10.1098/rstb.2010.0153.
12. Kluger D. M., Di Tommaso S., Lobell D. B. Evaluating crop rotations around the world using satellite imagery and causal machine learning. arXiv preprint. – 2025. arXiv:2506.02384. DOI: https://doi.org/10.48550/arXiv.2506.02384.
13. Koch H. J., Trimpler K., Jacobs A., Stockfisch N. Crop rotational effects on yield formation in current sugar beet production – results from a farm survey and field trials. Frontiers in Plant Science. 2018. Vol. 9. Article 231. DOI: https://doi.org/10.3389/fpls.2018.00231.
14. Makukh Y., Remeniuk S., Moshkivska S., Riznyk V., Zatserkovna N., Rudnyk-Ivashchenko O., Buzynnyi M. Water use of sugar beet and spring barley in different crop rotations and fertilisation systems in chernozem in Ukraine. Scientific Papers. Series A. Agronomy. 2023. Vol. 26(3). P. 04. DOI: 10.31210/spi2023.26.03.04.
15. Makukh Y., Remeniuk S., Moshkivska S., Riznyk V., Zatserkovna N., Remeniuk Y., Atamaniuk O. Dynamics of productive moisture reserves and water consumption in short-rotation grain-sugar beet crop rotations in the forest-steppe depending on fertilization. Ecological Engineering & Environmental Technology. 2025. Vol. 26(6). DOI: https://doi.org/10.12912/27197050/204338.
16. Milford G. F. J., Draycott A. P. Sugar beet physiology and yield formation. Cambridge University Press. 2012. 312 p.
17. Ortiz-Bobea A., Ault T. R., Carrillo C. M., Chambers R. G., Lobell D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change. 2020. Vol. 10. P. 306–312. DOI: https://doi.org/10.1038/s41558-020-0699-y.
18. Phelippé-Guinvarc M., Cordier J. Actuarial implications and modeling of yellow virus on sugar beet after EU neonicotinoid ban and future climates. arXiv preprint. 2023. arXiv:2310.01869. DOI: https://doi.org/10.48550/arXiv.2310.01869.
19. Pohanková E., Hlavinka P., Kersebaum K. C., Nendel C., Rodríguez A., Balek J., Trnka M. Climate change impacts on two European crop rotations via an ensemble of models. European Journal of Agronomy. 2025. Vol. 164. Article 127456. DOI: https://doi.org/10.1016/j.eja.2024.127456.
20. Prysiazhniuk O. I., Zaryshniak A. S., Sinchenko V. M., Muzyka O. V., Svystunova I. V., Slobodianiuk V. V., Borysenko B. M., Lukianchuk O. V. Patterns of changes in the yield and quality of sugar beet roots under the application of measures increasing tolerance to water deficit in the Right Bank Forest Steppe of Ukraine. Advanced Agritechnologies. 2022. Vol. 10(1). DOI: https://doi.org/10.47414/na.10.1.2022.281385.
21. Tsymbal Y. S., Boiko P. I., Martyniuk I. V., Bakumova M. V. Productivity of sugar beet in various crop rotations of the Left Bank Forest Steppe with organo-mineral fertilizer. Agriculture and Plant Sciences: Theory and Practice. 2022. Vol. 4. P. 12–18. DOI: https://doi.org/10.54651/agri.2022.04.0.




