Formation of quality of winter rape seeds depending on the complex variants of its fertilization

Keywords: oil content, fatty acid composition of oil, fertilizers, growth regulators, foliar feeding

Abstract

The aim of the research was to establish the peculiarities of the formation of fatty acid composition of winter rape seeds depending on the combinatorics of fertilizer system variants. Methods. The study was conducted during 2021–2024 on the basis of VIN-AGRO GROUP LLC on gray forest soils with medium fertility potential. The experiment was replicated four times. The placement of the variants was systematic in two tiers. The experiment involved the study of the following factors: A – annual conditions of the growing season, B – variant of the main fertilizer, C – application of growth regulators, D – foliar fertilization system. Results. The possibility of adjusting and changing both the oil content in winter rape seeds and its fatty acid composition through the combined use of optimized variants of the main fertilizer and the foliar fertilization system was proved The optimal fertilization options that allow obtaining an oil content of high-intensity winter rape hybrids at the level of 48.0% with the amount of technologically valuable fatty acids at the level of 85-87% in the total structure of its fatty acid composition were established. Conclusions. The agro-technologically expedient variant of fertilization of winter rape was determined, which provides: BBCH 00: Diammophoska N-9% P-25% K-25% (100 kg/ha) + Rosafert 5-10-25+10S (120 kg/ha); BBCH 14-18: Regulator Bukat ((thiconazole 500 g/l) (0.5 l/ha)); BBCH 19-20 (on permafrost soil): Rosafert NPK 16-14-07 (100 kg/ha) + UAN-32 (200 l/ha) + Ammonium Thiosulfate (ATS) (30 l/ha)); BBCH 35-39: Karamba Turbo 0.65 l/ha + Bukat 0.35 l/ha; BBCH 31-34: Rosalik (B, Mo, S) (1 l/ha) + adjuvant Spray-Aid (0.08 l/ha); BBCH 51-53: Rosasol 18-18-18 + ME (3 kg/ha) + adjuvant Spray-Aid (0.08 l/ha). The use of this system of combined fertilizer allows to maximize the oil content potential of rapeseed hybrids at the level of 46–48% with an optimized ratio of the main component fatty acids.

References

1. Kaletnik H., Pryshliak V., Pryshliak N. Public Policy and Biofuels: Energy, Environment and Food Trilemma. Journal of Environmental Management and Tourism. 2020. 10 4 (36). Р. 479–487.
2. Zatonski W., Campos H., Willett W. Rapid declines in coronary heart disease mortality in Eastern Europe are associated with increased consumption of oils rich in alphalinolenic acid. European Journal of Epidemiology. 2008. Vol. 23. P. 3–10.
3. Zadernowski R., Sosulski F. Composition of total lipids in rapeseed. Journal of the American Oil Chemists’ Society. 1978. Vol. 55. P. 870–872.
4. Wang C, Li Z, Wu W. Understanding fatty acid composition and lipid profile of rapeseed oil in response to nitrogen management strategies. International Food Research. 2023 Vol. 165. 112565.
5. Chew S.C. Cold-pressed rapeseed (Brassica napus) oil: Chemistry and functionality. Food Research International. 2020. Vol. 131. 108997.
6. Coonrod D., Brick M.A., Byrne P.F., Debonte L., Chen Z. Inheritance of long chain fatty acid content in rapeseed (Brassica napus L.). Euphytica. 2008. Vol. 164. P. 583–592.
7. Liersch A., Bocianowski J., Bartkowiak-Broda I. Fatty acid and glucosinolate level in seeds of different types of winter oilseed rape cultivars (Brassica napus L.). Communications in Biometry and Crop Science. 2013. Vol. 8. P. 39–47.
8. Kumar P.R., Tsunoda S. Variation in oil content and fatty acid composition among seeds from the Cruciferae. In: Tsunoda S, Hinata K, Gómez-Campo C (Eds). Brassica Crops and Wild Allies. Japan Scientific Societies Press,Tokyo. 1980. P. 235–252.
9. Arkadiusz S., Wojtkowiak, K., Pietrzak-fiecko R. Nutrient content, fat yield and fatty acid profile of winter rapeseed (Brassica napus L.) grown under different agricultural production systems. Chilean journal of agricultural research. 2017. Vol. 77. № 3. Р. 266–272.
10. Faraji A. Oil concentration in canola (Brassica napus L.) as a function of environmental conditions during seed filling period. International Journal of Plant Sciences. 2012. Vol. 6. № 3. P. 267–278.
11. Cwalina-Ambroziak B., Stepien A., Kurowski T.P., GlosekSobieraj M., Wiktorski A. The health status and yield of winter rapeseed (Brassica napus L.) grown in monoculture and in crop rotation under different agricultural production systems. Archives of Agronomy and Soil Science. 2016. Vol. 62. P. 1722–1732.
12. Ngezimana W., Agenbag G.A. Nitrogen and sulfur effects on macro and micronutrient contents in canola (Brassica napus L.) grown on acidic soils of the Western Cape province of South Africa. Communications in Soil Science and Plant Analysis. 2014. Vol. 45. P. 1840–1851.
13. Rathke G.W., Behrens T., Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitro-gen efficiency of winter oilseed rape (Brassica napus L.): A review. Agriculture, Ecosystems and Environment. 2006. Vol. 117. P. 80–108.
14. Sienkiewicz-Cholewa U., Kieloch R. Effect of sulphur and micronutrients fertilization on yield and fat content in winter rape seeds (Brassica napus L.). Plant, Soil and Environment. 2015. Vol. 61. №(4). P. 164–170.
15. Spychaj-Fabisiak E., Murawska B., Pacholczyk L. Values of quality traits of oilseed rape seeds depending on the fertilisation and plant density. Journal of Elementology. 2011. Vol. 16. P. 115–124.
16. Brennan R. F., Mason M. G., Walton G. H. Effect of nitrogen fertilizer on the concentrations of oil and protein in canola (Вrassica napus) seed. Journal of Plant Nutrition. 2000. Vol. 23. № 3. P. 339–348.
17. Shilan H. S., Hama S. J. Effect of NPK and organic fertilizers on yield and seed oil content of rapeseed (Brassica napus L.). Iraqi journal of agricultural sciences. 2022. Vol. 53. № 4. P. 878–889.
18. Spasibionek S., Wielebski F., Liersch A., Walkowiak M. The Influence of Nitrogen and Sulfur Fertilization on Oil Quality and Seed Meal in Different Genotypes of Winter Oilseed Rape (Brassica napus L.). Agriculture. 2024. Vol. 14. № 8. 1232.
19. Omidi H., Tahmasebi Z., Badi H.A.N., Torabi H., Miransari M. Fatty acid composition of canola (Brassica napus L.) as affected by agronomical, genotypic and environmental parameters. Comptes Rendus Biologies. 2010. Vol. 33. P. 248–254.
20. Shirani Rad A.H., Ganj-Abadi F., Jalili E.O., Eyni-Nargeseh H., Safavi Fard N. Zn foliar spray as a management strategy boosts oil qualitative and quantitative traits of spring rapeseed genotypes at winter sowing dates. Journal of Soil Science and Plant Nutrition. 2021. Vol. 21. № 2. P. 1610–1620.
21. Carré, P., Citeau, M., Robin, G., Estorges M. Hull content and chemical composition of whole seeds, hulls and germs in cultivars of rapeseed (Brassica napus L.)’. Oilseeds and fats, Crops and Lipids. 2016. Vol. 23. № 3. A302.
22. Kozłowska-Strawska J. Fat Content and Fatty Acid Composition in Oilseed Rape Grown in the Lubelski Region under Different Levels of Soil Sulphur Fertility. Ecological Chemistry and Engineering. A. 2012. Vol. 19. P. 191–201.
23. Мацера О.О. Вплив елементів технології вирощування на розвиток рослин, врожайність та якість насіння озимого ріпаку. Danish Scientific Journal. 2020. Issue 36 (2). С. 7–15.
24. Guan M., Huang X., Xiao Z., Jia L., Wang S., Zhu M., Qiao C., Wei L., Xu X., Liang Y., Wang R., Lu K., Li J., Qu C. Association Mapping Analysis of Fatty Acid Content in Different Ecotypic Rapeseed Using mrMLM. Frontiers in Plant Science. 2019. № 9. 1872.
25. Gacek K., Bayer P.E., Bartkowiak-Broda I., Szala L., Bocianowski J., Edwards D., Batley J. Genome-Wide Association Study of Genetic Control of Seed Fatty Acid Biosynthesis in Brassica napus. Frontiers in Plant Science. 2017. Vol. 7. 2062.
26. Zhou W. Application and development prospects of rapeseed oil in biodiesel production. Journal of Energy Bioscience. 2024. Vol. 15. № 2. P. 74–86.
27. Методика Державного сортовипробування сільськогосподарських культур. Методи визначення показників якості рослинної продукції / [за ред.О. М. Гончара]. К.: Алефа, 2000. Вип. 7. 144 с.
28. Karydogianni S., Roussis I., Kakabouki I., Mavroeidis A., Stavropoulos P., Efthimiadou A., Katsenios N., Giannoglou M., Katsaros G., Beslemes D., Triantafyllidis V., Bilalis D. Seed oil content, oil yield and fatty acids composition of black mustard [Brassica nigra (L.) Koch] in response to fertilization and plant density. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2023. Vol. 51. № 1. 13061.
29. Tsytsiura Y. Evaluation of oilseed radish (Raphanus sativus L. var. oleiformis Pers.) oil as a potential component of biofuels. Engenharia Agrícola, Jaboticabal. 2023. Vol. 43. Special issue. e20220137.
30. Karydogianni S., Roussis I., Mavroeidis A., Kakabouki I., Tigka E., Beslemes D., Stavropoulos P., Katsenios N., Tsiplakou E., Bilalis D. The influence of fertilization and plant density on the dry matter yield and quality of black mustard [Brassica nigra (L.) Koch]: An alternative forage crop. Plants. 2022. Vol. 11. 2683.
31. Varényiová M., Ducsay L. Effect of increasing spring doses of nitrogen on yield and oil content in seeds of oilseed rape (Brassica napus L.). Acta Fytotechnica et Zootechnica. 2016. Vol. 19. P. 29–34.
Published
2025-04-25
Section
MELIORATION, ARABLE FARMING, HORTICULTURE