OPTIMISATION OF PLANT DENSITY OF TETRAGONOLOBUS PURPUREUS (TETRAGONOLOBUS PURPUREUS MOENCH.)

Keywords: tetragonolobus, sowing density, yield, nitrogen, dry matter, sugars, vitamin C.

Abstract

Objective. To determine the optimal sowing density of tetragonolobus to achieve maximum productivity and improve product quality. Methods. The study was conducted using a set of methods, including field experiments, laboratory studies and statistical analysis of data. Results. The study showed that the sowing density had a significant impact on the productivity and quality of tetragonalobus. At the lowest sowing density (89 thousand units/ha), the highest plant productivity (43.9 g) was achieved. With increasing density, productivity decreased. The most effective was the sowing scheme of 45 x 10 cm, which provided the maximum yield of spade beans (6.2 t/ha), exceeding the control by 6.9%. Increasing the distance between plants in the row led to a decrease in yield, especially with the 45 x 20 cm and 45 x 25 cm sowing scheme, where the yield was 22.4‑44.2% lower compared to the control. The 45 x 25 cm sowing scheme provided the highest content of total nitrogen in the beans (3.2%). With increasing sowing density, this indicator decreased, reaching a minimum (2.7%) at a density of 45 x 10 cm. Sowing density of 89 and 111 thousand units/ha provided a high dry matter content, exceeding the control by 1.8–3.3%. At the same time, at a density of 222 thousand units/ha, the dry matter content was the lowest, 2.8% lower than the control. The high content of total sugars (7.4–7.7%) was observed at a sowing density of 89 and 111 thousand units/ha. With increasing density, the sugar content decreased. The maximum content of vitamin C (38.5 mg/100 g) was found at a density of 89 thousand units/ha, and the minimum (30.8 mg/100 g) – at 222 thousand units/ha. A clear negative relationship between sowing density and productivity of one plant was found (r=-0.98). The yield initially increased with increasing density, but then began to decline. The content of total nitrogen, dry matter, total sugars and vitamin C also decreased with increasing sowing density (correlation coefficients from -0.96 to -0.99). Conclusions. The highest yield of tetragonolobus beans was achieved with a planting pattern of 45 x 10 cm, which corresponds to 222 thousand units/ha. It is at a sowing density of 89–111 thousand units/ha that the maximum amount of biologically active substances accumulates in the beans. There is a negative correlation between sowing density and productivity of one plant. A curvilinear relationship between the density of sowing of tetragonolobus and bean yield was found. With increasing sowing density, bean yield first increases, then reaches a maximum and begins to decline. Increasing the number of plants per unit area negatively affects the biochemical parameters of beans.

References

1. Бобось І.М., Федосій І.О., Комар О.О. Науково- виробничі рекомендації з вирощування тетрагонолобуса (Tetragonolobus purpureus Moench.) для отримання бобів лопаток. Київ : ЦП «Компринт», 2023. 37 с.
2. Сич З.Д., Бoбoсь І.М. Малопоширені бобові овочеві рослини: вихідний колекційний матеріал і технології вирощування : мoнoграфія. Київ: «ЦП «Компринт», 2019. 172 c.
3. Afridatul S., Syukur M., TRIKOESOEMANINGTYAS T., Maharijaya A. Agro-morphological traits and harvest period assessment of winged bean (Psophocarpus tetragonolobus) genotypes for pods production. Biodiversitas Journal of Biological Diversity. 2021. Vol. 22, №. 2. P. 1069–1075. DOI: 10.13057/biodiv/d220264
4. Bepary R.H., Roy A., Pathak K., Deka S.C. Biochemical composition, bioactivity, processing, and food applications of winged bean (Psophocarpus tetragonolobus): A review. Legume Science. 2023. Vol. 5, № 3. P. e187. DOI: 10.1002/leg3.187
5. Calvindi J., Syukur M., Nurcholis W. Investigation of biochemical characters and antioxidant properties of different winged bean (Psophocarpus tetragonolobus) genotypes grown in Indonesia. Biodiversitas Journal of Biological Diversity. 2020. Vol. 21, № 6. P. 2420–2424. DOI: 10.13057/biodiv/d210612
6. Guiguitant J., Vile D., Ghanem M.E., Wery J., Marrou H. Evaluation of pulse crops’ functional diversity supporting food production. Scientific Reports. 2020. Vol. 10, № 1, 3416. DOI: 10.1038/s41598-020-60166-4
7. Ho W.K., Tanzi A.S., Sang F., Tsoutsoura N., Shah N., Moore C., Mayes S. A genomic toolkit for winged bean Psophocarpus tetragonolobus. Nature Communications. 2024. Vol. 15, № 1, P. 1901. DOI: 10.1038/s41467-024-45048-x
8. Khalid M. H. B., Raza M. A., Yu H.Q., Sun F. A., Zhang Y.Y., Lu F.Z., Li W. C. Effect of shade treatments on morphology, photosynthetic and chlorophyll fluorescence characteristics of soybeans (Glycine max L. Merr.). Applied Ecology & Environmental Research. 2019. Vol. 17, № 2. P. 2551–2569. DOI: 10.15666/ aeer/1702_25512569
9. Mahdipour-Afra M., AghaAlikhani M., Abbasi S., Mokhtassi-Bidgoli A. Growth, yield and quality of two guar (Cyamopsis tetragonoloba L.) ecotypes affected by sowing date and planting density in a semi-arid area. Plos one. 2021. Vol. 16. № 9. P. e0257692. DOI: 10.1371/journal.pone.0257692
10. Marwiyah S., Sutjahjo S.H., Wirnas D., Suwarno W.B. Genetic analysis and selection of short harvest period in F2 population of mungbean. In IOP Conference Series: Earth and Environmental Science. IOP Publishing. 2020/ Vol. 484, № 1. P. 012006. DOI: 10.1088/1755-1315/484/1/012006
11. Mathukia R.K., Shekh M.A., Chopada M.C., Sagarka B.K. Appraisal of optimal sowing time based on heat indices and row spacing for summer guar [Cyamopsis tetragonoloba (L.) Taub.]. Farming and Management. 2018. Vol. 3, № 1. P. 47–51. DOI: 10.31830/2456-8724.2018.0001.8
12. Meena S., Dubey S.K. Different levels of fertilizers on growth and yield of cluster bean (Cyamopsis tetragonoloba L.) in Rainfed Area of Uttar Pradesh, India. Int. J. Curr. Microbiol. App. Sci. 2017. Vol. 6, № 4. P. 2029–2036. DOI: 10.20546/ijcmas.2017. 604.240
13. MHERAT M., Shatnawi M., Shibli R., Qudah T., Malloh S.A., Tamadour A.Q. Clonal propagation of Tetragonolobus palaestinus Bioss: A Jordanian medical plant. Acta agriculturae Slovenica. 2022. Vol. 118, № 3. P. 1–9.
14. Pawlak K., Kołodziejczak M. The role of agriculture in ensuring food security in developing countries: Considerations in the context of the problem of sustainable food production. Sustainability. 2020. Vol. 12, № 13. P. 5488. DOI: 10.3390/su12135488
15. Raai M.N., Zain N.A.M., Osman N., Rejab N.A., Sahruzaini N.A., Cheng A. Effects of shading on the growth, development and yield of winged bean (Psophocarpus tetragonolobus). Ciência Rural. 2020. Vol. 50, № 2. P. e20190570. DOI: 10.1590/0103-8478cr20190570
16. Sibhatu K.T., Qaim M. Rural food security, subsistence agriculture, and seasonality. PloS one. 2017. Vol. 12, № 10. P. e0186406. DOI: 10.1371/journal. pone.0186406
17. Tanzi A.S., Eagleton, G.E., Ho, W.K., Wong Q.N., Mayes S., Massawe F. Winged bean (Psophocarpus tetragonolobus (L.) DC.) for food and nutritional security: synthesis of past research and future direction. Planta. 2019. Vol. 250. P. 911–931. DOI: 10.1007/ s00425-019-03141-2
18. Tiwari B.K., Gowen A., McKenna B. Advances in pulse foods. In Pulse Foods. Academic Press. 2021. P. 1–7. DOI: 10.1016/B978-0-12-818184-3.00001-5
Published
2025-01-27
Section
MELIORATION, ARABLE FARMING, HORTICULTURE