Dynamics of the soil nitrogen content depending on the forms of nitrogen fertilizers when growing corn for grain

Keywords: urea-ammonia mixture, urea, anhydrous ammonia, productivity

Abstract

Nitrogen is vital to corn as it plays a key role in promoting healthy plant growth, building essential proteins and greatly increasing productivity. Maize is very sensitive to this element, and adequate nitrogen availability is essential to achieve high yields, both in terms of biomass production and final grain production. Therefore, the studies of the effectiveness of using different forms of nitrogen fertilizers in corn cultivation are relevant. The study aim was to compare the effectiveness of different forms of nitrogen fertilizers and their effect on the soil nitrogen content when corn cultivation. Methods. Field experiments were carried out in 2023 in the conditions of the Forest-steppe of Ukraine using generally accepted agricultural techniques for soil cultivation and the application of nitrogen fertilizers (CAM- 32, urea, anhydrous ammonia). A study of the nitrogen content at depths of 0–20 cm, 20–40 cm, and 40–60 cm (IV plot – control, without fertilizer) was carried out in four experimental plots before and after fertilizer application. Results. It was established, the soil nitrogen content on average in all plots increased by 15.0% (138.6 mg/kg), 12.7% (122.3 mg/kg) and 11.1% (93, 6 mg/kg) in the soil layers to a depth of 0–20 cm, 20–40 cm, 40–60 cm, respectively, after the fertilizers’ application. The fertilizers’ application to plots I–III had different effects on the soil nitrogen content at different depths. The greatest impact was determined on the 1st plot when KAS-32 (200 kg/ha) was used, due to which the nitrogen content increased by 37.1, 36.5 and 17.4% in the soil layers, 0–20 cm, 20–40 cm deep, 40–60 cm, respectively. On the II plot, where urea (150 kg/ha) was applied, the smallest increase in the soil nitrogen content was obtained – 5.5–7.4%. In the III plot, after the anhydrous ammonia introduction (85 kg/ha), the maximum increase in the soil nitrogen occurred at a depth of 0–20 cm – by 20.5 mg/kg (17.2 %) and at a depth of 40–60 cm – by 17 mg/kg (21.1 %). Conclusions. According to the study results, CAM-32 was the most effective form of nitrogen fertilizers in terms of impact on the soil nitrogen content due to the presence of all three forms of nitrogen in the composition. A longer period of time (7–14 days) is required to enhance the effect of anhydrous ammonia and urea on the soil nitrogen content.

References

1. Benefits of nitrogen for corn production. 2023. URL: https://www.krugerseed.com/en-us/agronomy-library/benefits-of-nitrogen-for-corn-production.html.
2. Miao Y., Mulla D.J., Robert P.C., Hernandez J.A. Withinfield variation in corn yield and grain quality responses to nitrogen fertilization and hybrid selection. Agronomy Journal. 2006. Vol. 98. P. 129–140.
3. Below F. The seven wonders of the corn yield world. 2018. URL: http://cropphysiology. cropsci.illinois.edu/research/seven_wonders.html.
4. Zhang L., Zhang X., Gao Q., Yan Li. Nitrogen application effect on maize yield, NH3, and N2O emissions in Northeast China by meta-analysis. Agronomy. 2023. Vol. 13 (6), 1479. DOI: 10.3390/agronomy13061479
5. Omonode R.A., Halvorson A.D., Gagnon B., Vyn T.J. Achieving lower nitrogen balance and higher nitrogen recovery efficiency reduces nitrous oxide emissions in North America’s maize cropping systems. Frontiers in Plant Science. 2017. Vol. 8. DOI: 10.3389/fpls.2017.01080
6. Stasiv O., Olifir Y. Formation of corn productivity in crop rotation depending on long-term fertilization and liming. Folia Pomer. Univ. Technol. Stetin., Agric., Aliment., Pisc., Zootech. 2021. Vol. 358(57)1. P. 29–40. DOI: 10.21005/AAPZ2021.57.1.03
7. Ladha J.K., Pathak H., Krupnik T.J., Six J., van Kessel C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy. 2005. Vol. 87. P. 85–156. DOI: 10.1016/S0065-2113(05)87003-8
8. Qiu S.J., He P., Zhao S.C., Li W.J., Xie J.G., Hou Y.P., Grant C.A., Zhou W., Jin J.Y. Impact of nitrogen rate on maize yield and nitrogen use efficiencies in northeast China. Agronomy Journal. 2015. Vol. 107 (1). P. 305–313. DOI: 10.2134/agronj13.0567
9. Cambouris A.N. Ziadi N., Perron I., Alotaibi K.D., Luce M.St., Tremblay N. Corn yield components response to nitrogen fertilizer as a function of soil texture. Canadian Journal of Soil Science. 2016. Vol. 96 (4). DOI: 10.1139/cjss-2015-0134
10. Іванюк В., Гнатів П., Оліфір Ю. Вплив азотних добрив на формування врожаю зерна кукурудзи й ефективність використання азоту. Вісник Львівського національного університету природокористування. Серія Агрономія. 2022. № 26. С. 170–176. DOI: 10.31734/agronomy2022.26.170
11. Лихочвор В. В., Петриченко В. Ф. Фізіологічна роль елементів живлення та системи удобрення польових культур: 3-тє вид., переробл. Львів: Українські технології, 2021. 284 с.
12. Логінова І. Секрети кукурудзяного успіху. Агроіндустрія. 2019. № 7. С. 22–32. URL: https://infoindustria.com.ua/sekreti-kukurudzyanogousipihu.
13. Куценко О.М., Ляшенко В.В., Чайка Т.О., Кеда Л.Ю. Особливості росту, розвитку та формування продуктивності гібридів кукурудзи залежно від строку сівби. Таврійський науковий вісник. 2023. № 134. С. 79–88. DOI: 10.32782/2226-0099.2023.134.12
14. Короткова І.В., Чайка Т.О. Роль гумінових препаратів та їх сумішей з мінеральними добривами в технологіях вирощування пшениці озимої. Екологоорієнтовані підходи відновлення техногенно забруднених територій і створення сталих екосистем : колективна монографія ; за заг. ред. Т.О. Чайки. Полтава : Астрая, 2022. С. 279–322.
15. Внесення КАС: сроки, способи, особливості, розрахунок. URL: https://agrarii-razom.com.ua/article/vnesennya-kas-sroki-sposobi-osoblivosti-rozrahunok.
16. Роль елементів у живленні кукурудзи. 2022. URL: https://lidea-seeds.com.ua/news/kukurudza/rolelementiv-u-zhyvlenni-kukurudzy.
17. Правила застосування сечовини як добрива для рослин. URL: https://klioma-servise.in.ua/ua/a476279-pravila-primeneniya-mocheviny.html.
18. Woodley A.L., Drury C.F., Yang X.Y., Phillips L.A., Reynolds D.W., Calder W., Oloya T.O. Ammonia volatilization, nitrous oxide emissions, and corn yields as influenced by nitrogen placement and enhanced efficiency fertilizers. Soil Science Society of America Journal. 2020. Vol. 84. P. 1327–1341. DOI: 10.1002/saj2.20079
19. Pan B., Lam S.K., Mosier A., Luo Y., Chen D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agriculture, Ecosystems & Environment. 2016. Vol. 232. P. 283–289. DOI: 10.1016/j.agee.2016.08.019
20. Sunderlage B., Cook R.L. Soil property and fertilizer additive effects on ammonia volatilization from urea. Soil Science Society of America Journal. 2018. Vol. 82. P. 253–259. DOI: 10.2136/sssaj2017.05.0151
21. Dick W.A. Influence of long-term tillage and crop rotation combinations on soil enzyme activities. Soil Science Society of America Journal. 1984. Vol. 48. P. 569–574.
22. Bender R.R., Haegele J.W., Ruffo M.L., Below F.E. Nutrient uptake, partitioning, and remobilization in modern, transgenic insect-protected maize hybrids. Agronomy Journal. 2013. 105. P. 161–170. DOI: 10.2134/agronj2012.0352
23. Якушко С.І., Іванов М.П. Органічні та мінеральні добрива: переваги та технології виробництва. Хімічна промисловість України. 2008. № 3 (86). С. 38–43.
Published
2024-05-21
Section
MELIORATION, ARABLE FARMING, HORTICULTURE