Correlation and path analysis of productivity and its components in spring barley

Keywords: spring barley, correlations, path analysis, productivity, selection

Abstract

Correlation and analysis of path coefficients establishes the nature of complex interrelationships between productivity and its components. The purpose of the work is to determine the correlation coefficients of 7 quantitative plant traits of varieties and lines of spring barley and the results of a path analysis of productivity (grain weight per plant) in different ecological and geographical zones. Methods. The analysis was carried out according to the main indicators of productivity: plant height, productive tillering, spike length, kernel number per spike, grain weight per spike, grain weight per plant, weight of 1000 grains. Pairwise correlation coefficients and path coefficient analysis were determined using OPSTAT software. Results. The analysis of average values of correlations in different zones for the same sample of spring barley varieties shows that the main characteristics for selection for productivity are grain weight per spike, weight of 1000 grains and spike length. The signs of productive tillering and kernel number per spike can change under the influence of the environment, so selection for these signs may not be effective enough. Conclusions. In the conditions of the three zones, a significant high direct correlation of grain weight per plant with grain weight per spike, weight of 1000 grains and spike length was established. In different zones, the formation of productivity, according to the path analysis indicator, depended on different signs: in the conditions of NSDS, the kernel number per spike (1.148), followed by weight of 1000 grains (0.934) and the productive tillering (0.589) showed the greatest direct positive effect on productivity; in the conditions of MIP, the productive tillering (0.593) and weight of 1000 grains (0.583) showed a high direct positive effect on productivity; in ISGS conditions, the productive tillering (0.571) and the grain weight per spike (0.476) showed a direct positive effect on productivity.

References

1. Samonte S.O., Wilson L.T., Clung Mc.M. Path analysis of yield and yield-related traits of fifteen diverse rice genotypes. Crop Science. 1998, 38: 1130–1136.
2. Sinebo W. Yield relationships of barleys grown in a tropical highland environment. Crop Science. 2002, 42: 428–437.
3. Vasylenko A.О., Vus N.О., Ponurenko S.H., Shevchenko L.M., Bezuhlyi I.M., Glyantsev A.V. Аdvanced correlation analysis of the performance of pea varieties. Селекція і насінництво. 2023, Вип. 123. 6–17.
4. Полякова І.О. Кореляційно-регресійний аналіз господарських ознак в селекційній роботі з льоном олійним. Науково-технічний бюлетень Інституту олійних культур НААН. 2020, № 29. С. 92–101. DOI: 10.36710/ioc-2020-29-09.
5. Перегрим О.Р. Кореляційні зв’язки між ознаками продуктивності в селекції конюшини повзучої (Tifolium repens L.). Передгірне та гірське землеробство і тваринництво. 2016, Вип. 59. С. 136–143.
6. Жупина А.Ю., Базалій Г.Г., Усик Л.О., Марченко Т.Ю., Сучкова В.М., Міщенко С.В., Лавриненко Ю.О. Успадкування маси зерна колоса гібридами пшениці озимої різного еколого-генетичного походження в умовах зрошення. Аграрні інновації. 2022, № 14, С. 152–160. DOI https://doi.org/10.32848/agrar.innov.2022.14.22
7. Riaz A.T., et al. Developing a Selection Criterion Using Correlation and Path Coefficient Analysis in Sunflower (Helianthus Annuus L.). Helia. 2019. 10.1515/helia-2017-0031.
8. Wright S. Correlation and causation. J. Agric. Res. 1921, 20: 202–209.
9. Selvaraja C.I, Nagarajan P. Inter relationship and path coefficient studies for qualitative traits, grain yield, and other yield attributes among maize (Zea mays L.). Int. J. of Plant breeding and Genetics. 2011, 5(3): 209–223.
10. Desta Abebe Belete, Atsedemariam Tewachew, Mulugeta Bitew, Tafere Mulualem. Correlation and path coefficient studies for yield and its components of upland rice (Oryza sativa L.) in North Western Ethiopia. Journal of Scientific Agriculture. 2022, 6: 14–19 doi: 10.25081/jsa.2022.v6.7253.
11. Drikvand R., Samiei K., Hossinpor T. Path coefficient analysis in Hulless Barley under rainfed condition, Australian Journal of Basic and Applied Sci. 2011, 5(12): 277–279.
12. Saleh M.M., Salem K.F.M., Elabd A.B. Definition of selection criterion using correlation and path coefficient analysis in rice (Oryza sativa L.) genotypes. Bull Natl Res Cent. 2020, 44 (143). https://doi.org/10.1186/s42269-020-00403-y.
13. Vidya C, Jagtap V.S, Santhosh N. Correlation and path coefficient analysis for yield and yield attributing characters in chilli (Capsicum annum L.) genotypes. Int J Curr Microbiol Appl Sci. 2018, 7(1): 3265–3268. doi:10.20546/ijcmas.2018.701.390.
14. Компанець К.В., Козаченко М.Р., Васько Н.І., Наумов О.Г., Солонечний П.М., Святченко С.І. Кореляція між кількісними ознаками сортів ячменю ярого. Селекція і насінництво. 2016, Вип. 109. C. 40–46.
15. Nessa D., Islam H., Mirza S.H., Azimuddin M., Genetic variability, correlation and path analysis in barley (Hordeum vaulgare L). Bangladesh J. Bot., 1998, 32: 181–185.
16. Четверик О.О., Козаченко М.Р. Коефіцієнти кореляції та детермінації між ознаками сортів пшениці м’якої озимої. Селекція і насінництво. 2015, Вип. 107. С. 105–114.
17. Mohammad Zaefizadeh, Marefat Ghasemi, Jafar Azimi, Majid Khayatnezhad and Babak Ahadzadeh; Correlation Analysis and Path Analysis for Yield and its Components in Hulless Barley. Advances in Environmental Biology. 2011, 5(1): 123–126.
18. Sherwan Esmail Tofiq, Taban Najmalddin Hama Amin, Suaad Muhammad Sheikh Abdulla, Dana Azad Abdulkhaleq. Correlation and path coefficient analysis of grain yield and yield components in some barley genotypes created by full diallel analysis in sulaimani region for F2 generation. International Journal of Plant, Animal and Environmental Sciences. 2015, Vol. 5, Issue-4, P. 76–79.
19. Hailu A., Alamerew S., Nigussie M., Assefa E. Correlation and Path Coefficient Analysis of Yield and Yield Associated Traits in Barley (Hordeum vulgare L.) Germplasm. Adv Crop Sci. 2016, Tech 4: 216. doi:10.4172/2329-8863.1000216.
20. Matin M.Q.I. et al. Int. J. Appl. Sci. Biotechnol. 2019, Vol. 7(2): 243–247. DOI: 10.3126/ijasbt.v7i2.24635.
21. Sheoran O.P., Tonk D.S., Kaushik L.S., Hasija R.C., Pannu R.S. Statistical Software Package for Agricultural Research Workers. Recent Advances in information theory, Statistics & Computer Applications by D.S. Hooda & R.C. Hasija Department of Mathematics Statistics, CCS HAU, Hisar. 1998, 139–143.
Published
2024-01-11
Section
BREEDING, SEED PRODUCTION