THE EFFECT OF THE NITRIFICATION INHIBITOR 3,4‑DIMETHYLPYRAZOLE PHOSPHATE ON THE PRODUCTIVITY OF CORN IN COMBINATION WITH UAN‑32

Keywords: nitrogen nutrition, productivity, nitrogen loses, ammonium and nitrate nitrogen, urea-ammonia solution, denitrification.

Abstract

Purpose. To study the effect of the nitrification inhibitor 3,4‑dimethylpyrazole phosphate applied together with UAN‑32 (urea-ammonia solution) on the yield of corn in 20182021. Methods. During 20182021, research was conducted in the conditions of the Druzhba Nova scientific research center of the Varvinsky District, Chernihiv Region. (department of the Kernel agricultural holding) on typical lowhumus black soil. One-factor experiment, control – (without nitrogen fertilizers). Background – N32P30K42 in combination with UAN‑32 at a rate of 350 kg/ha without nitrification inhibitor (in the spring after vegetation recovery), variant N32P30K42 plus UAN‑32 at a rate of 350 kg/ha with the addition with nitrification inhibitor and variant N32P30K42 compatible with a reduced rate of UAN‑32 at a rate of 300 kg/ha ha with nitrification inhibitor. Results. Experiments confirmed that the use of nitrification inhibitor in combination with UAN‑32 significantly affected the yield of corn. At the same rate of UAN‑32 at 350 kg/ha, the option using nitrification inhibitor showed an increase in yield by 5,5 c/ha or 6.1% compared to the option using UAN‑32 at the same rate of 350 kg/ha without nitrification inhibitor. The option with a reduced rate of UAN‑32 up to 300 kg/ha with nitrification inhibitor compared to the option with an increased rate of UAN‑32 in 350 kg/ha but without nitrification inhibitor showed an increase in yield at the level of 7,8 c/ha or 8,7% in average for 4 years of studies 20182021. Conclusions. It was established that the increase in corn yield on the variants using nitrification inhibitor in combination with UAN‑32 compared to the control (without nitrogen fertilizers) was 13,8–16,1 c/ha (17,0–19,8%) and on the variants with using nitrification inhibitor in combination with UAN‑32 in comparison with the variant with UAN‑32 but without nitrification inhibitor, an increase in corn yield was in the range of 9,5–11,8 c/ha (11,1–13,8%) in average over 4 years of research in 20182021.

References

1. Яковлев Н. Б., Аверьянова А. И. "Влияние применения минеральных удобрений на урожайность и качество зерна кукурузы." Сельскохозяйственная биология, 2017. Том 52. №2. С. 287–293.
2. Калинкин П. Н., Лопатинская О. В., Абрамов А. С., Белякова Л. В. «Влияние предшественников и минеральных удобрений на урожайность кукурузы в условиях Центральной зоны России». Вестник Оренбургского государственного аграрного университета, 2017. Том 1. №39. С. 117–122.
3. Zhang W., Wang X., & Zhang Y. (2016). Effect of nitrogen application rate on yield and nitrogen use efficiency of maize in Northeast China. Frontiers in Plant Science. 7, 1–12.
4. Fernández M. C., Rubio G. (2015). Root morphological traits related to phosphorus-uptake efficiency of soybean, sunflower, and maize. Journal of Plant Nutrition and Soil Science. 178, 807–815.
5. Ma B. L., & Dwyer L. M. (2015). Nitrogen management for improving corn yield and nitrogen use efficiency in cool, humid regions. Agronomy Journal. 107(2), 779–788.
6. Быстрова Т. А. "Роль азота в росте и развитии кукурузы." Аграрный вестник Урала, 2019. Том 167. №1. С. 89-96.
7. Vitousek P. M., Aber J. D., Howarth R. W., Likens G. E., Matson P. A., Schindler D. W., & House G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications. 7(3), 737–750.
8. Панченко Л. С., Букин Е. В., Комарова Л. А., Желтоножский В. А. "Эколого-экономический анализ использования азотных удобрений в производстве кукурузы в Украине." Аграрный вестник Днепропетровской области, 2018. Том. 1. №64. С. 67–72.
9. Xu G., Fan X., & Miller A. J. (2012). Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology. 63, 153-182.
10. Chunlian Q., Lingli L., Shuijin H. еt al. (2015). How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biology. 21 (1249–1257), 3–5. doi: 10.1111/gcb.12802
11. Лаврова И. А. Ингибиторы нитрификации и эффективность азотных удобрений: Обзорная информация. Москва: ВНИИТЭИагропром, 1990. 40 с.
12. Legg J. O., Allison F. E. (1967). A tracer study of nitrogen balance and residual nitrogen availability with 12 soils. Soil Sei. Soc. Amer. Proc. 31 (3), 403–406.
13. Subbarao G. V., Ito O., Berry W. L., Wheeler R. M., & Bunderson W. T. (2015). Sustainable agriculture through soil microbiology: A perspective. Biological Agriculture & Horticulture. 31(2), 69–82.
14. Cameron K. C., Di H. J., Moir J. L., & Stirling C. M. (2013). Nitrogen losses from the soil/plant system: a review. Annals of Applied Biology. 162(2), 145–173.
15. Малюга Ю. Е. Теоретическое обоснование эффективности азотных удобрений пролонгированного действия в лесном и сельском хозяйстве Украины. Харьков: ЧПИ «Новое слово», 2006. 438 с.
16. Каленська С. М., Таран В. А. (2018). Індекс урожайності гібридів кукурудзи залежно від густоти стояння рослин, норм добрив та погодних умов вирощування. Вивчення та захист сортів рослин. 14 (4):141–149.
17. Shafi M., Bakht J., Ali S., Khan H., Khan M. A., Sharif M. (2012). Effect of planting density on phenology, growth and yield of maize (Zea mays L.). Pak. J. Bot. 44. (2), 691–696.
18. Муравин Э. А. Ингибиторы нитрификации. Москва: Агропромиздат, 1989. 247 с.
19. Zerulla W., Barth T., Dressel J. еt al. (2001). 3,4-Dimethylpyrazole phosphate (DMPP) – a new nitrification inhibitor for agriculture and horticulture. Biol Fertil Soils. 34 (79–84), 1–4.
20. Kumar K., Goh K. M., Choo C. M., Sabaratnam V., & Tan Y. P.(2017). Nitrification inhibitors from the soil environment and their potential use for enhancing crop production. Applied Microbiology and Biotechnology. 101 (1), 13–25.
21. Abalos D., Jeffery S., Sanz-Cobena A., Guardia G., and Vallejo A. (2014). Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 189, 136–144. doi:10.1016/j.agee.2014.03.036
22. Cruchaga S., Artola E., Lasa B., Ariz I., Irigoyen I., Moran J. F., etal. (2011). Short term physiological implications of NBPT application on the N metabolism of Pisumsativum and Spinaceaoleracea. J. Plant Physiol. 168, 329–336.doi:10.1016/j.jplph.2010.07.024
23. Chaves B., et al. (2006). Influence of DCD and DMPP on soil N dynamics after incorporation of vegetable crop residues. Biol. Fert. Soils. 43, 62–68.
24. Weiske A., Benckiser G., Herbert T. & Ottow J. (2001). Influence of the nitrification inhibitor 3, 4-dimethylpyrazole phosphate (DMPP) in comparison to dicyandiamide (DCD) on nitrous oxide emissions, carbon dioxide fluxes and methane oxidation during 3 years of repeated application in field experiments. Biol. Fert. Soils. 34, 109–117.
25. Abbasi M. K., Hina M., Tahir M. M. (2011). Effect of Azadirachta indica (neem), sodiumthiosulfate and calciumchloride on changes in nitrogen transformations and inhibition of nitrification in soil incubated under laboratory conditions. Chemosphere 82, 1629–1635.
26. Goos R. J., 1985. Identification of ammonium thiosulfate as a nitrification and urease inhibitor. Soil Sci. Soc. Am. J. 49, 232–235.
27. Ashworth J., Briggs G. G., Evans A. A. and Matula J. (1997). Inhibition of nitrification by nitraryrin, carbon disulfide and trithiocarbonate. J. Sci. Food Agric. 28, 673–683.
28. Sahrawat K. L., Parmar B. S. (1975). Alcohol extract of Neem (Azadirachta indica L.) seed as nitrification inhibitor. J. Indian Soc. Soil. Sci. 23, 131–134.
29. Santhi S. R., Palaniappan S. P., Purushothaman D. (1986). Influence of neem leaf on nitrification in low land rice soil. Plant Soil. 93, 133–135.
30. Commission regulation (EU) № 1257/2014 amending Regulation (EC) No 2003/2003 of the European Parliament and of the Council relating to fertilizers for the purposes of adapting Annexes I and IV. 2014. P. 12
Published
2023-07-05
Section
BREEDING, SEED PRODUCTION