FORMATION OF THE ASSIMILATION LEAF SURFACE OF SOYBEAN VARIETIES DEPENDING ON THE ELEMENTS OF TECHNOLOGY UNDER IRRIGATION CONDITIONS

Keywords: sowing period, plant density, maturity groups, productivity, leaf surface area, photosynthetic potential.

Abstract

Purpose. The purpose of the article is to analyze the influence of technology elements on the leaf surface area, to determine the photosynthetic potential of soybean crops of different maturity groups and to calculate correlationregression models of their influence on seed yield under irrigation conditions. Methods. Field, laboratory, statistical. The field work included the layout of the experimental site and field work. The laboratory method was used for plant analysis. Research results were calculated using a statistical method. Results. Soybean varieties differed significantly in terms of "leaf surface area". In early varieties: Monarch, Arnica, the leaf surface area was 26.9–34.3 thousand m2/ha, in early ripening varieties Pysanka, Sofia – 34.0–38.5 thousand m2/ha, in mid-early varieties Svyatogor, Eurydika the leaf surface area was 43.2–48.1 thousand m2/ha. There is a strong positive relationship between the area of the leaf surface in the phase of its maximum manifestation and the productivity of soybean seeds at different sowing times. The correlation coefficients were within r=0.822-0.855 for all sowing periods. Extrapolation of the leaf surface area beyond the limits of experimental data (the maximum area in the experiments is 49.7 thousand m2/ha) allows predicting the yield of soybean seeds of more than 4.5 t/ha. Calculations of correlation-regression models of photosynthetic potential and yield of soybean seeds at different sowing times showed that there is a strong positive relationship between these parameters. A strong correlation of productivity with photosynthetic potential was observed for all sowing periods in the totality of studied varieties. The correlation coefficients were in the range of r=0.744–0.889, which indicates the need to increase the area of the soybean leaf surface with technological measures. Correlationregression dependences of soybean seed yield and photosynthetic potential at different cenosis densities were unambiguous. The average dependence of photosynthetic potential and seed yield was observed for different options of sowing density. Conclusions. During 2019–2021, all elements of the researched technology had a significant impact on the photosynthetic performance of soybean varieties of different maturity groups. The plant density of 700,000 plants/ha is the most universal for various varietal resources and sowing periods. The obtained experimental data testify to the effectiveness of the application of such elements of technology as sowing dates and plant density in order to reveal the potential of soybean varietal resources.

References

1. Гангур В. В., Єремко Л. С., Саєнко В. О. Динаміка формування листкової поверхні чини посівної та продуктивність її фотосинтетичної діяльності залежно від рівня мінерального живлення. Аграрні інновації. 2021. № 8. С. 23–28. https://doi.org/10.32848/agrar. innov.2021.8.3
2. Ткачук О. П., Дідур І. М., Мазур О. В. Адаптивність, стійкість і продуктивність середньо ранньостиглих сортів сої. Аграрні інновації. 2022. № 16. С. 70–79. https://doi.org/10.32848/agrar.innov.2022.16.12
3. Srinivasan V., Kumar P., Long S. P. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. Global change biology. 2017. Vol. 23, Iss. 4. P. 1626–1635.
4. Wu Y., Gong W., Wang Y., Yong T., Yang F., Liu W., Yang, W. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean. Journal of Plant Research. 2018. Vol. 131. P. 671–680.
5. Gong W. Z., Jiang C. D., Wu Y. S., Chen H. H., Liu W. Y., Yang W. Y. Tolerance vs. avoidance: Two strategies of soybean (Glycine max) seedlings in response to shade in intercropping. Photosynthetica. 2015. Vol. 53. P. 259–268.
6. Tagliapietra E.L., Streck N.A., da Rocha T.S.M., Richter G.L., da Silva M.R., Cera J.C., Zanon A.J. Optimum leaf area index to reach soybean yield potential in subtropical environment. Agronomy Journal. 2018. Vol. 110, Iss. 3. P. 932–938.
7. Yang F., Fan Y., Wu X., Cheng Y., Liu Q., Feng L., Chen J., Wang Z., Wang X., Yong T., Liu W., Du J., Shu K., Yang, W. Auxin-to-gibberellin ratio as a signal for light intensity and quality in regulating soybean growth and matter partitioning. Front. Plant. Sci. 2018a. Vol. 9. 56. https://doi.org/10.3389/fpls.2018.00056
8. Wu Y., Gong W., Yang, W. Shade inhibits leaf size by controlling cell proliferation and enlargement in soybean. Sci. Rep. 2017. Vol. 7. 9259. https://doi.org/10.1038/s41598-017-10026-5
9. Yang F., Huang S., Gao R., Liu W., Yong T., Wang X., Wu X., Yang W. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crop Res. 2014. Vol. 155. P. 245–253. https://doi.org/10.1016/j. fcr.2013.08.011
10. Yang F., Liao D., Wu X., Gao R., Fan Y., Raza M.A., Wang X., Yong T., Liu W., Liu J., Du J., Shu K., Yang W. Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crop Res. 2017. Vol. 203. P. 16–23. https://doi.org/10.1016/j.fcr.2016.12.007
11. Kong D.-X., Li Y.-Q., Wang M.-L., Bai M., Zou R., Tang H., Wu H. Effects of light intensity on leaf photosynthetic characteristics, chloroplast structure, and alkaloid content of Mahonia bodinieri (Gagnep.) Laferr. Acta Physiol. Plant. 2016. Vol. 38. Р. 120. https://doi.org/10.1007/s11738-016-2147-1
12. Wu Y., Gong W., Wang Y., Yong T., Yang F., Liu W., Wu X., Du J., Shu K., Liu J., Liu C., Yang W. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean. J. Plant. Res. 2018. Vol. 131. P. 671–680. https://doi.org/10.1007/s10265-018-1027-8
13. Yang F., Feng L., Liu Q., Wu X., Fan Y., Raza M.A., Cheng Y., Chen J., Wang X., Yong T., Liu W., Liu J., Du J., Shu K., Yang W. Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition. Environ. Exp. Bot. 2018b. Vol. 150. P. 79–87. https://doi.org/10.1016/j. envexpbot.2018.03.008
14. Yang F., Wang X., Liao D., Lu F., Gao R., Liu W., Yong T., Wu X., Du J., Liu J., Yang W. Yield response to different planting geometries in maize–soybean relay strip intercropping systems. Agron. J. 2015. Vol. 107. Р. 296. https://doi.org/10.2134/agronj14.0263
15. Wu Y., Gong W., Yang F., Wang X., Yong T., Yang, W. Responses to shade and subsequent recovery of soya bean in maize-soya bean relay strip intercropping. Plant Prod. Sci. 2016. Vol. 15. P. 1–9. https://doi.org/10.1080 /1343943X.2015.1128095
16. Su B.Y., Song Y.X., Song C., Cui L., Yong T.W., Yang W.Y. Growth and photosynthetic responses of soybean seedlings to maize shading in relay intercropping system in Southwest China. Photosynthetica. 2014. Vol. 52. P. 332–340. https://doi.org/10.1007/ s11099-014-0036-7
17. Slewinski T. L., Braun, D. M. Current perspectives on the regulation of whole-plant carbohydrate partitioning. Plant Science. 2010. Vol. 178, Issue 4. P. 341–349. doi.org/10.1016/j.plantsci.2010.01.010
18. Rijkers T., Pons T.L., Bongers F. The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance. Funct. Ecol. 2010. Vol. 14. P. 77–86. https://doi. org/10.1046/j.1365-2435.2000.00395.x
19. Yao X., Li C., Li S., Zhu Q., Zhang H., Wang H., Yu C., Martin S.K.St., Xie F. Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regul. 2017. Vol. 83. P. 409–416. https://doi.org/10.1007/s10725-017-0307-y
20. Вожегова Р.А., Лавриненко Ю.О., Марченко Т.Ю., Клубук В.В., Боровик В.О. Створення вихідного матеріалу для селекції сої на адаптивність в умо- вах зрошення півдня України. Херсон: ОЛДІ-ПЛЮС, 2021. 180 с.
21. Ушкаренко В.О., Нікішенко В.Л., Голобородько С.П., Коковіхін С.В. Дисперсійний і кореляційний аналіз у землеробстві та рослинництві. Херсон: Айлант, 2008. 270 с.
22. Вожегова Р. А., Лавриненко Ю. О., Малярчук М. П. Методика польових і лабораторних досліджень на зрошуваних землях. Херсон: Грінь Д.С., 2014. 285 с.
23. Lamichhane J. R., Constantin J., Schoving C., Maury P., Debaeke P., Aubertot J.N., Dürr C. Analysis of soybean germination, emergence, and prediction of a possible northward establishment of the crop under climate change. European Journal of Agronomy. 2020. Vol. 113. 125972. https://doi.org/10.1016/j.eja.2019.125972
24. Grabovskyi M., Mostypan O., Fedoruk,Y., Kozak L., Ostrenko M. Formation of grain yield and quality indicators of soybeans under the influence of fungicidal protection. Scientific Horizons. 2023. Vol. 26, Iss. 2. P. 66–76. https://doi.org/10.48077/scihor.26(2).2023.66-76
25. Bastidas A. M., Setiyono T. D., Dobermann A., Cassman K. G., Elmore R.W., Graef G. L., Specht J. E. Soybean sowing date: The vegetative, reproductive, and agronomic impacts. Crop Science. 2008. Vol. 48, Iss. 2. P. 727–740. https://doi.org/10.2135/ cropsci2006.05.0292
26. Didora V., Romantschuk L., Kliuchevych M., Vyshnivskyi P., Matviichuk N. Varietal features of elements of organic soybean cultivation technology. Scientific Horizons. 2022. Vol. 25, Iss. 12. P. 60–68. https://doi.org/10.48077/scihor.25(12).2022.60-68
Published
2023-07-04
Section
MELIORATION, ARABLE FARMING, HORTICULTURE