Genetic resources of plants are an important basis for the selection of new varieties
Abstract
Purpose. The purpose of the research is to select from the researched numbers valuable samples in terms of economic properties for their further use in the selection process when creating new varieties. Methods. Experiments were conducted in the selective crop rotation fields of the selection department of the Institute of Climate-oriented Agriculture of the National Academy of Sciences during 2020–2022. Research methods are field, laboratory, statistical. The field work included the layout of the experimental site and field work. The laboratory method was used to analyze plants and assess the structure of the crop. Research results were calculated using a statistical method. Results. Over the course of three years, four new samples of cultivated soybeans were studied in the collection nursery – UKR00600870 Eurydice, UKR00600871 Aurora, UKR00600872 Southern Star, UKR00600873 Orpheus under irrigation conditions of the Southern Steppe of Ukraine. Based on the results of the research, the sources of valuable features are selected. Samples UKR006:00870 Eurydice, UKR006:00873 Orpheus, UKR006:00871 Aurora, UKR006:00872 Southern Star were characterized by a "short" germination-full maturity period (104–109 days); UKR00:600872 Southern star – "large" height of attachment of the lower bean above the soil level (12.8 cm); UKR00:600871 Aurora – "extremely high performance" (34.8 g). A complex of economic and valuable traits was possessed by UKR006:00872 Southern Star – a short vegetation period of seedlings-full maturity and a "large" height of attachment of the lower bean above the soil level and UKR00:600871 Aurora – a "short" vegetation period of seedlings-full maturity and "extremely high productivity". Conclusions. As a result of the research carried out in the irrigation conditions of the Southern Steppe of Ukraine, the soybean sample UKR00600871 Aurora stood out, which possessed the closest relationships between the elements of productivity and the mass of seeds from the plant, almost at the level of the standard variety UD0201975 Danaya, including: with "the number of nodes on the plant" – r=0.90, "the diameter of the 1st internode" r=0.79, "the number of beans and seeds on the main stem" r=0.82-0.71, "all seeds from the plant" r= 0.93. Common for all samples, the closest relationship between the mass and the number of seeds per plant was observed, which was in the range of r=0.77–0.93. UKR006:00872 Southern Star possessed a complex of economic and valuable traits – a short vegetation period, seedlings-full ripeness and a "large" height of attachment of the lower bean above the soil level.
References
2. Ray D. K., Mueller N. D., West P. C., Foley J. A. Yield trends are insufficient to double global crop production by 2050. LoS One. 2013. 8(6). e66428.10.1371/journal. pone.0066428.
3. Vozhehova R., Borovik V., Kokovikhin S., Kokovikhina O., Boiarkina L., Shkoda O.. Evaluation of cotton gene pool samples in different years of heat supply in the conditions of the southern steppe of Ukraine. Scientific Papers. Series A. Agronomy. 2022. Vol. LXV, No. 2. Р. 313-318. https://agronomyjournal.usamv.ro/index.php/ scientific-papers/current?id=1504.
4. Guo B., Sun L., Siqi Jiang S., Ren H., Sun R., Wei Z., Hong H., Luan X., Wang J., Wang X., Xu D., L W., Guo C., Qiu Li J. Soybean genetic resources contributing to sustainable protein production. Theoretical and Applied Genetics. 2022. 135:4095–4121. https://doi. org/10.1007/s00122-022-04222-9.
5. JiaJ J., Li H., Zhang X., Li Z., Qiu L. Genomics-based plant germplasm research (GPGR). The Crop Journal. 2017. Vol. 5(2). P. 166-174. https://doi.org/10.1016/j. cj.2016.10.006.
6. Vozhehova R., Borovyk V., Biliaieva I., Lykhovyd P., Rubtsov D. The effect of plants density nitrogen fertilization on the economic efficiency of soybean seed production in the irrigated conditions of the South of Ukraine. Scientific Papers Series Management, Economic Engineering in Agriculture and Rural Development. 2019. Vol. 19(3). Р. 649-657. https://managementjournal.usamv.ro/pdf/vol.19_3/ volume_19_3_2019.pdf.
7. Zhuang Y., Li X., Hu J., Xu R., Zhang D. Expanding the gene pool for soybean improvement with its wild relatives. aBIOTECH. 2022. 3:115–125. https://doi. org/10.1007/s42994-022-00072-7.
8. Swarup S. E. J., Crosby K., Flage L., Kniskern J., Glenn K. C. Genetic diversity is indispensable for plant breeding to improve crops. Crop Science. 2020. Vol. 61(2). Р. 839-852. https://doi.org/10.1002/ csc2.20377.
9. Zhang H. F, Yasmin F., Song B. H. Neglected treasures in the wild—legume wild relatives in food security and human health. Curr Opin Plant Biol. 2019. 49:17–26. doi: 10.1016/j.pbi.2019.04.004.
10. Kingsley O., Lili Y., Bo-hong S., Ming-ming Z., Zhang- Xiong L., Hua-wei G., Sobhi F., Lamlom and Qiu Li-juan. Genetic Improvement of Minor Crop Legumes: Prospects of De Novo Domestication. In book: Genetic Improvement of Minor Crop Legumes: Prospects of De Novo Domestication. Publisher: IntechOpen. 2022. Р.26. DOI: 10.5772/intechopen.102719.
11. Zhang S., Zhang Z., Wen Z., Gu C., An Y. C., Bales C., DiFonzo C., Song Q., Wang D. Fine mapping of the soybean aphid-resistance genes Rag6 and Rag3c from Glycine soja 85-32. Theor Appl Genet. 2017 Dec; 130(12):2601-2615. doi: 10.1007/s00122-017-2979-0. Epub 2017 Sep 8. PMID: 28887657.
12. Lee J. S., Yoo M. H., Jung J. K., Bilyeu K. D., Lee J. D., Kang S. Detection of novel QTLs for foxglove aphid resistance in soybean. Theor Appl Genet. 2015 Aug;128(8):1481-8. doi: 10.1007/s00122-015-2519-8. Epub 2015 Apr 23. PMID: 25904004.
13. Kenworthy W. J., Brown A., Thibou G. A. Variation in flowering response to photoperiod in perennial glycine species. Crop Science. 1989. Vol. 29(3). Р. 678-682. https://doi.org/10.2135/cropsci1989.0011183X0029000 30028x.
14. Mignucci J. S., Chamberlain D. W. Interactions of Microsphaera diffusa with soybeans and other legumes. Phytopathology. 1987. 68:169–117. DoI:10.1007/978-3-642-14387-8.
15. Herman T. K., Han J., Singh R. J., Domier L. L., HartmanG. L. Evaluation of wild perennial Glycine species for resistance to soybean cyst nematode and soybean rust. Plant Breeding. 2020. Vol. 139(5). Р. 923-931. https:// doi.org/10.1111/pbr.12834.
16. Hartman G. L., Gardner M. E., Hymowitz T., Naidoo G. C. Evaluation of perennial Glycine species for resistance to soybean fungal pathogens that cause Sclerotinia stem rot and sudden death syndrome. Theor Appl Genet. 2022. 135 (11): 4095–4121. doi: 10.1007/ s00122-022-04222-9.
17. Le D. T., Nishiyama R., Watanabe Y., Tanaka M., Seki M., Ham L. H., Yamaguchi-Shinozaki K., Shinozaki K., Tran L. S. P. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One. 2012. 7(11):e49522. DOI: 10.1371/journal.pone.0049522.
18. Ning W. F., Zhai H., Liang Yu. J. Q. S, Yang X., Xing X. Y., Huo J. L., Pang T., Yang Y. L., Bai X. Overexpression of Glycine soja WRKY20 enhances drought tolerance and improves plant yields under drought stress in transgenic soybean. Mol Breeding. 2017. 37:19. ISSN: 1380-3743. doi:10.1007/s11032-016-0614-4.
19. Song B., Oehrle N. W., Liu S., Krishnan H. B.. Characterization of Seed Storage Proteins of Several Perennial Glycine Species. Agric Food Chem. 2016. Nov 16; 64(45):8499-8508. doi: 10.1021/acs.jafc.6b03677.
20. Munns R., Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008; 59:651-81. doi: 10.1146/ annurev.arplant.59.032607.092911.
21. Phang T. H., Shao G. H., Lam H. M. Salt tolerance in soybean. Integr Plant Biol. 2008. 50:1196–1212. https://doi.org/10.1111/j.1744-7909.2008.00760.x.
22. Lee J. D., Shannon J. G., Vuong T. D., Nguyen H. T. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463. Hered. 2009. 100:798–801. DOI: 10.1093/jhered/esp027.
23. 23 Katerji N., Hoorn J. W., Hamdy A., Mastrorilli M. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agricultural Water Management. 2003. Vol. 62, 1 (19). 2003, P. 37-66. https://doi. org/10.1016/S0378-3774(03)00005-2.
24. Guan R. X., Chen J. G., Jiang J. H., Liu G. Y., Liu Y., Tian L., Yu L .L., Chang R. Z., Qiu L. J. Mapping and validation of a dominant salt tolerance gene in the cultivated soybean (Glycine max) variety Tiefeng 8. Crop J. 2014. 2:358–365.
25. Phang T. H., Shao G. H., Lam H. M. Salt tolerance in soybean. Integr Plant Biol. 2008. 50:1196–1212. https:// dx.doi.org/10.1016/j.cj.2014.09.001.
26. Волкодав В. В. Методика державного сортовипробування сільськогосподарських культур. Випуск третій (олійні, технічні, прядильні та кормові культури). Київ: Алефа, 2001. 76 с.
27. Методика польових і лабораторних досліджень на зрошуваних землях. За ред. Р. А. Вожегової. Херсон: Грінь Д.С., 2014. 286 с.
28. Ушкаренко В. О., Вожегова Р. А., Голобородько С. П., Коковіхін С. В. Методика польового досліду (Зрошуване землеробство). Херсон: Грінь Д.С., 2014. 448 с.
29. Кобизєва Л. Н., Рябчун В. К., Безугла О. М., Дрепіна Т. О. Дрепін І. М. Потьомкіна Л. М. Сокол Т. В. Божко Т. М. Садовой О. О. Білявська Л. Г. Широкий уніфікований класифікатор роду Glycine max (L.) Merr. Харків, 2004. 38 с.
30. Кобизєва Л. Н., Безугла О. М., Силенко С. І., Колотилов В. В., Сокол Т. В., Докукіна К. І., Василенко А. О., Безуглий І. М., Вус Н. О. Методичні рекомендації з вивчення генетичних ресурсів зернобобових культур. НААН, Інститут рослинництва ім. В. Я. Юр’єва. Харків, 2016. 84 с.
31. Петренкова В. П., Черняєва І. М., Маркова Т. Ю., Сокол Т. В. Хвороби та шкідники сої. Харків, 2005. 40 с.
32. Вожегова Р. А., Боровик В. О., Клубук В. В., Бояркіна Л. В., Біднина І. О. Особливості нових зразків сої Glycine max. (L.) в умовах зрошення Півдня України. Вісник аграрної науки. Київ: Аграрна наука, 2022. Т. 100. № 3. С. 82-87 DOI: https://doi. org/10.31073/agrovisnyk202203-10.