Estimation of drought resistance of alfalfa populations for fodder use in the year of sowing by mathematical indices

Keywords: alfalfa, fodder productivity, drought resistance, mathematical indices, biplot analysis

Abstract

Purpose. To evaluate the reaction of varieties, populations of alfalfa in different environments and determine the best not only for drought resistance but also for productivity under stress with their subsequent use in the breeding process. Methods. The research was conducted at the Institute of Irrigated Agriculture of NAAS (Ukraine, Kherson, Naddnipryanske village, 46 ° 44’50.1 “N 32 ° 42’30.0” E), located on the Ingulets irrigated massif, during 2017‒2019 in the field. Lucerne varieties and populations were studied. Productivity and drought resistance were determined using the following indices: average yield (MP), drought tolerance index (SSI), drought tolerance index (TOL), yield stability index (YSI), yield index (YI), stress tolerance index (STI), geometric mean (proportional) yield (GMP), relative drought resistance index (RDI), drought resistance index (DI), stress tolerance index (SSPI), modified stress tolerance indices (M1STI, M2STI, MSTI), abiotic tolerance index (ATI), Harmonic Average Performance (HMP) and Stress Resilience Index (ISR). Results. Weather conditions over the years of research differed both in temperature and in the amount and nature of precipitation, which made it possible to analyze alfalfa varieties and populations for seed productivity for resistance to stressful (arid) growing conditions. The Drought Sensitivity Index (SSI) characterizes the sensitivity of a genotype to drought, namely: the lower the index, the greater the drought resistance of the genotype. The lowest rates were in populations: A.r. d. – 0.83, FHNV2 – 0.87 and J. / CP-11 – 0.89. The highest level of yield stability index (YSI) was demonstrated by three populations: A.r. d. (0.30), FHNV2 (0.26) and J. / CP-11 (0.24), which showed a high yield index (YI) with indicators of 196.8; 187.37 and 166.65, respectively. The first two of them were the best in terms of geometric average yields (GMP = 3.84 and 3.92,). Populations of A.r. d., FHNV2 and J. / CP-11 were distinguished by the indices of relative drought resistance (RDI), drought resistance (DI) and harmonic productivity (HMP) with indicators: 1.99 and 1.73, 1.73, 0.5842 and 0.4836 and 3.22 and 3.16, respectively. High indicators of the stress resistance index (ISR = 4.23) characterized the population of A.r. d., which had the highest yield (2.09 kg/m2) under stress and average (7.04 kg/m2) under irrigation. Conclusions. Analyzing the obtained data on drought resistance indices and biplot analysis in alfalfa populations of the first year of life on forage productivity, the population of A.r. d., which responds least to deteriorating humidification conditions and population B.11 / P. d. – demanding to humidification conditions.

References

1. Abdelguerfi A., Abdelguerfi-Laouar M. Forage and pasture species: The uses in Maghreb (Algeria, Morocco, and Tunisia). FAO, Rome, Italy. 2002.
2. Aleksandrov V. Climate change on the Balkan Peninsula. Ecology and future. Vol. I, № 2-4, 2002. Р. 26–30.
3. Annicchiarico P., Pecetti L., Abdelguerfi A., Bouizgaren A., Carroni A.M., Hayek T., et al. Adaptation of landrace and variety germplasm and selection strategies for lucerne in the Mediterraneanbasin. Field Crops Research. Volume 120, Issue 2, 31 January, 2011. Р. 283–291. doi: 10.1016/j.fcr.2010.11.003.
4. Blum A. Drought resistance, water-use efficiency, and yield potential – are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural
Research. 2005. Vol. 56, № 11. P. 1159–1168. URL: https://doi.org/10.1071/AR05069.
5. Blum A. Plant breeding for stress environments. CRC Press, Boca Raton, Florida, USA. 1988.
6. Bouslama M., Schapaugh W. T. Stress tolerance in soybean. Evaluation of three screening techniques for heat and drought tolerance. Crop Science. 1984. Vol. 24, № 5. Р. 933–937. doi: 10.2135/cropsci1984.0011183X002400050026x.
7. Boussen H., BenSalem M., Slama A., Mallek-Maalej E., Rezgui S. Evaluation of drought tolerance indices in durum wheat recombinant inbred lines Options Mediterraneennes. 2010. 95. С. 79–83. URL: http://om.ciheam.org/om/pdf/a95/00801329.pdf.
8. Cattivelli L., Rizza F., Badeck F.W., Mazzucotelli E., Mastrangelo A.M., Francia E., Marè C., Tondelliand A., Stanca A.M. Drough ttolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research. 105, 2008. Р. 1–14. doi: 10.1016/j.fcr.2007.07.004.
9. Chakherchaman S. A., Mostafaei H., Imanparast L., Eivazian M. R. Evaluation of drought tolerance in lentil advanced genotypes in Ardabil region. Journal of Food Agriculture and Environment. 2009. 7. Р. 283–288.
10. Choukan R., Taherkhani T., Ghannadha M.R., Khodarahmi M. Evaluation of drought tolerance in grain maize in bred lines using drought tolerance indices. Iran. J. Agric. Sci. Vol. 8, Issue 1, 2006. Р. 79–89.
11. Djamal Bellague, Mahfoud M’Hammedi-Bouzina, Aïssa Abdelguerfi. Measuring the performance of perennial alfalfa with drough ttolerance indices. Chilean journal of agricultural. 76(3). 2016. p. 273–284. doi: 10.4067/S0718-58392016000300003.
12. Durand J. L. Les effets du stress hydrique sur la plante: The effects of water stress on the plant: Physiological aspects. Fourrages, 190, 2007. P. 181–195.
13. Farshadfar E., Sutka J. Multivariate analysis of drought tolerance in wheat substitution lines. Cereal Res Commun, 31, 2002. P. 33–40. URL: https://www.jstor.org/stable/23787201.
14. Fernandez C. J. Effective selection criteria for assessing plant stress tolerance. Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress. Aug. 13–16. Shanhua, Taiwan, 1992. Р. 257–270.
15. Fisher R. A., Maurer R. Drought resistance in spring wheat cultivars. Grain yield responses. Australian Journal of Agricultural Research. 1978. Vol. 29, № 5. Р. 897–912. Doi: org/10.1071/AR9780897.
16. Gavuzzi P., Rizza F., Palumbo M. et al. Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journals of Plant Science. 1997. Vol. 77, № 4. Р. 523–531.
17. Harrison M. T., Tardieu F., Dong Z., Messina C. D., Hammer G. L. Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob. Change Biol. 2014. Volume 20, Issue 3. Р. 867–878. Doi: 10.1111/gcb.12381.
18. Hussain S. S., Raza H., Afzal I., Kayani M. A. Transgenic plants for abiotic stress tolerance: Current status. Archives of Agronomy and Soil Science. 2012. Volume 58, Issue 7. Р. 693–721. doi: 10.1080/03650340.2010.540010.
19. Jafari A., Paknejad F., Jami Al-Ahmadi M. Evaluation of selection indices for drought tolerance of corn (Zea mays L.) hybrids. Inter J. Plant Prod. 2009. 3(4). Р. 33–38.
20. Koleva M., Dimitrova V. Evaluation of drought Tolerance in new cotton cultivars using stress tolerance indices. Agrofor International Journal. 2018. Vol. 3, Issue 1. Р. 11–17. Doi: 10.7251/AGRENG1801011K.
21. Kristin A. S., Serna R. R., Perez F. I., Enriquez B. C., Gallegos J. A. A., Vallejo P. R., Wassimi N., Kelley J. D. Improving common bean performance under drought stress. CropSci. 37. 1997. P. 43–50.
22. Lan J. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agriculturae Borealioccidentalis Sinica. 1998. Vol. 7. P. 85–87.
23. Latrach, L., Farissi M., Mouradi M., Makoudi B., Bouizgaren A., Ghoulam C. Growth and nodulation of alfalfa-rhizobia symbiosis under salinity: electrolyte leakage, stomatal conductance, and chlorophyll fluorescence. Turkish Journal of Agriculture and Forestry. 2014. 38. Р. 320–326. doi: 10.3906/tar-1305-52.
24. Lemaire G. La luzerne: Alfalfa. Productivity and quality. In Abdelguerfi, A. (ed.) forage Fabaceae diversity and their symbionts: biotechnological, agronomic and environmental applications. International Workshop, Algiers, Algeria. 2006. P. 174–182.
25. Lin C. S., Binns M. R. A superiority measure of cultivar performance for cultivar × location data. Can. J. PlantSci. 1988. 68. P. 193–198. URL: https://doi.org/10.4141/cjps88-018.
26. Mitra J. Genetics and genetic improvement of drought resistance in crop plants. Current Sci. 2001. 80. P. 758–762.
27. Mollasadeghi V., Valizadeh M., Shahryari R., Imani A. A. Evaluation of end drought tolerance of 12 wheat genotypes by stress indices. World Applied Sciences Journal. 2011. Volume 13, Issue 3. P. 545–551.
28. Moosavi S.S., Yazdi-Samadi B., Naghavi M.R., Zali A.A., Dashti H., Pourshahbazi A. Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes. Desert 12, 2008. P. 165–178.
29. Muthukumar Bagavathiannan, Rene C. Van Acker. The Biology and Ecology of Feral Alfalfa (Medicago sativa L.) and Its Implications for Novel Trait Confinement in North America. March 2009, Critical Reviews in Plant Sciences. 2009. Volume 28, Issue 1-2. Р. 69–87. DOI: 10.1080/07352680902753613.
30. Naeemi M., Akbari G., Shirani Rad A.H., Modares Sanavi S.A.M., Sadat-Nuri S.A., Jabari H. Evaluation of drought tolerance in different. 2008.
31. Rosielle A. A., Hamblin J. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science. 1981. Vol. 21, № 6. Р. 943–946. doi: 10.2135/cropsci1981.0011183X002100060033x.
32. Saba J., Moghaddam M., Ghassemi K., Nishabouri M.R. Genetic properties of drought resistance indices. J. Agric. Sci. Technol. 3, 2001. P. 43–49.
33. Shuo Li, Liqiang Wan, Zhongnan Nie, Xianglin Li. Fractaland Topological Analysesand Antioxidant Defense Systems of Alfalfa (Medicago sativa L.) Root System under Drought and Rehydration Regimes. Agronomy. 2020. Volume 10, Issue 6, P. 1–21. Doi: 10.3390/agronomy10060805.
34. Vasconcelos, E. S. D., Barioni Junior, W., Cruz, C. D., Ferreira, R. D. P., Rassini, J. B., &Vilela, D. Alfalfa genotype selection for adaptability and stability of dry matter production. Acta Sci. Agron. 2008. Vol. 30, № 3. Р. 339–343. Doi: 10.4025/actasciagron.v30i3.3511.
35. Vozhehova Raisa, Tyshchenko Andrii, Tyshchenko Olena, Dymov Oleksandr, Piliarska Olena, Lykhovyd Pavlo. Evaluation of breeding indices for drought tolerance in alfalfa (Medicago) genotypes. Scientific Papers. Series A. Agronomy. 2021. Vol. LXIV, No. 2. Р. 435–444.
36. Wang, Z., Ke, Q., Kim, M. D., Kim, S. H., Ji, C. Y., Jeong, J. C., et al. Transgenic alfalfa plants expressing the sweet potato orange gene exhibit enhanced abiotic stress tolerance. PLoS ONE, 10, 2015. Doi: 10.1371/journal.pone.0126050.
37. Yu L-X. Identification of Single-Nucleotide Polymorphic Loci Associated with Biomass Yield under Water Deficit in Alfalfa (Medicago sativa L.) Using Genome-Wide Sequencing and Association Mapping. Front. Plant Sci. June 2017, Volume 8. Р. 1152. Doi: 10.3389/fpls.2017.01152.
38. Zou G.H., Liu H.Y., Mei H.W., Liu G.L., Yu X.Q., Li M.S., Wu J.H., Chen L., Luo L.J. Screening for Drought Resistance of Rice Recombinant Inbred Populations in the Field. J. Integr. Plant Biol. 2007. 49(10). Р. 1508–1516.
39. Вожегова Р.А., Тищенко А.В., Тищенко О.Д., Димов О.М., Люта Ю.О. Особливості прояву адаптивних ознак у селекційних популяцій люцерни при вирощуванні на насіння. Вісник СумНАУ. Серія «Агрономія і біологія». 2021. Випуск 2(44). С. 3–11. DOI: https://doi.org/10.32845/agrobio.2021.2.1
40. Тищенко А.В., Тищенко О.Д., Люта Ю.О. Оцінка генотипів люцерни за насіннєвою продуктивністю на посухостійкість. Таврійський науковий вісник. Херсон : ВД «Гельветика», 2021. № 120. С. 155–168. DOI: https://doi.org/10.32851/2226-0099.2021.120.21.
Published
2022-07-13
Section
BREEDING, SEED PRODUCTION