The characteristics of tillage methods under maize cultivation
Abstract
In recent years, Ukraine has increasingly increased its leadership in the export of agricultural crops, including grain corn. Thus, for the last five years (2015–2020) the area under cultivation has been growing every year, but the yield has been constantly varying. Although the main factors influencing yields are agro-climatic conditions, fertilizers and timely application of plant protection products, however, the soil tillage also plays an important role. Among the most popular methods of tillage in Ukraine are plowing, Strip-till and No-till, however, others are usually practiced. Each of them has its advantages and disadvantages. Because the choice of a particular tillage directly affects the yield and quality of products grown. Therefore, the aim of this article is to identify the strengths and weaknesses of tillage in terms of the impact on crop yields, dry matter content in plants, as well as the impact on the physical properties of the soil using scientific literature around the world. Results. The positive influence of traditional (plowing) tillage technologies on corn yield and dry matter content in plants is highlighted. However, data on the impact on the physical properties of the soil are quite contradictory. Depending on the soil, climatic conditions, fertilizers, etc. the effect of tillage on the physical properties of the soil varies considerably. This question has been particularly well studied by Chinese scientists. Therefore, it is impossible to unambiguously identify tillage that would be ideal for growing grain corn. However, some researchers believe that the physical properties of the soil are best influenced by minimal tillage. Each of the treatments affects the analyzed parameters in its own way. Therefore, each farm should choose the main tillage for corn based on the end result it seeks to obtain.
References
2. Статистичний збірник «Сільське господарство України» за 2020 рік / за ред. О.М. Прокопенко ; Державна служба статистики України. Київ, 2021. 230 с.
3. Собко М.Г., Бутенко А.О., Філоненко А.А., Кравець В.В. Шляхи зростання ефективності виробництва зерна кукурудзи. Editorial board, 2022. 28 с.
4. Neupane, D., Adhikari, P., Bhattarai, D., Rana, B., Ahmed, Z., Sharma, U., & Adhikari, D. Does Climate Change Affect the Yield of the Top Three Cereals and Food Security in the World? Earth, 2022. 3(1). 45–71. URL: https://doi.org/10.3390/earth3010004.
5. Gao, Y., Zhang, A., Yue, Y., Wang, J., & Su, P. Predicting Shifts in Land Suitability for Maize Cultivation Worldwide Due to Climate Change: A Modeling Approach. Land, 2021. 10(3). 295. URL: https://doi.org/10.3390/land10030295.
6. Wu, J. Z., Zhang, J., Ge, Z. M., Xing, L. W., Han, S. Q., Chen, S. H. E. N., Kong, F. T. Impact of climate change on maize yield in China from 1979 to 2016. Journal of Integrative Agriculture, 2021. 20(1), 289–299. URL: https://doi.org/10.1016/S2095-3119(20)63244-0.
7. Song, Y., Tian, J., Linderholm, H.W., Wang, C., Ou, Z., & Chen, D. The contributions of climate change and production area expansion to drought risk for maize in China over the last four decades. International Journal of Climatology, 2021. 41, E2851-E2862. URL: https://doi.org/10.1002/joc.6885.
8. Kim, M., & Sung, K. Assessment of causality between climate variables and production for whole crop maize using structural equation modeling. Journal of Animal Science and Technology, 2021. 63(2), 339–353. URL: https://doi.org/10.5187/jast.2021.e36.
9. Maitah, M., Malec, K., & Maitah, K. Influence of precipitation and temperature on maize production in the Czech Republic from 2002 to 2019. Sci Rep, 2021. 11, 10467. URL: https://doi.org/10.1038/s41598-021-89962-2.
10. El-Sanatawy, A.M., El-Kholy, A.S.M., Ali, M.M.A., Awad, M.F., & Mansour, E. Maize Seedling Establishment, Grain Yield and Crop Water Productivity Response to Seed Priming and Irrigation Management in a Mediterranean Arid Environment. Agronomy, 2021. 11(4), 756. URL: https://doi.org/10.3390/agronomy11040756.
11. Xiang, N., Hu, J., Wen, T., Brennan, M. A., Brennan, C. S., & Guo, X. Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn (Zea mays L.) seedlings. Journal of the Science of Food and Agriculture, 2020. 100(4), 1694–1701.
12. Du, X., Wang, Z., Lei, W., & Kong, L. Increased planting density combined with reduced nitrogen rate to achieve high yield in maize. Sci Rep, 2021. 11(1), 358. URL: https://doi.org/10.1038/s41598-020-79633-z.
13. Yang, Y.S., Guo, X.X., Liu, H.F., Liu, G.Z., Liu, W.M., Ming, B., Xie, R.Z., Wang, K.R., Hou, P., & Li, S.K. The effect of solar radiation change on the maize yield gap from the perspectives of dry matter accumulation and distribution. Journal of Integrative Agriculture, 2021. 20(2), 482–493. URL: https://doi.org/10.1016/S2095-3119(20)63581-X.
14. Guo, X., Yang, Y., Liu, H., Liu, G., Liu, W., Wang, Y., Zhao, R., Ming, B., Xie, R., Wang, K., Hou, P., Xiao, C., & Li, S. Effects of solar radiation on root and shoot growth of maize and the quantitative relationship between them. Crop Science, 2021. 61(2), 1414–1425. URL: https://doi.org/10.1002/csc2.20416.
15. Li, G. H., Cheng, Q., Long, L.I., Lu, D.L., & Lu, W.P. N, P and K use efficiency and maize yield responses to fertilization modes and densities. Journal of Integrative Agriculture, 2021. 20(1), 78–86. URL: https://doi.org/10.1016/S2095-3119(20)63214-2.
16. Gotosa, J., Kodzwa, J., Gwenzi, W., & Nyamangara, J. Maize nitrogen uptake and productivity under reduced and conventional tillage. Nutr Cycl Agroecosyst, 2021. 119(1), 23–36. URL: https://doi.org/10.1007/s10705-020-10104-7.
17. Вольвач, В. О., Толмачова, А. В., & Колосовська, В. В. Методичні вказівки до лабораторних робіт з навчальної дисципліни «Біологія» на тему: «Морфологія та анатомія рослин. Частина 1. Корінь, стебло, квітка» для студентів першого року навчання денної та заочної форми за спеціальністю 101 «Екологія», рівень вищої освіти «бакалавр». Одеса, ОДЕКУ, 2020 р. 50 с.
18. Moitzi, G., Schueller, M., Szalay, T., Wagentristl, H., Refenner, K., Weingartmann, H., Boxberger, J., & Gronauer, A. Energy Consumption and Energy Efficiency of Different Tillage Systems in the Semi-Arid Region of Austria. Agriculture Engineering, 2013. 4, 25–33.
19. Mileusnić, Z.I., Petrović, D.V., & Đević, M.S. Comparison of tillage systems according to fuel consumption. Energy, 2010. 35(1), 221–228. URL: https://doi.org/10.1016/j.energy.2009.09.012.
20. Akbarnia, A., & Farhani, F. Study of fuel consumption in three tillage methods. Research in Agricultural Engineering, 2014. 60(4), 142–147.
21. Rusu, T. Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage. International Soil and Water Conservation Research, 2014. 2(4), 42–49. URL: https://doi.org/10.1016/S2095-6339(15)30057-5.
22. Moraru, P.I., & Rusu, T. No-tillage and minimum tillage systems with reduced energy consumption and soil conservation in the hilly areas of Romania. Journal of Food, Agriculture & Environment, 2013. 11(2), 1227–1231.
23. Delitte, M., Caulier, S., Bragard, C., & Desoignies, N. Plant Microbiota Beyond Farming Practices: A Review. Frontiers in Sustainable Food Systems, 2021. 5, 66. URL: https://doi.org/10.3389/fsufs.2021.624203.
24. Momirović, N., Dolijanović, Ž., Oljač, M. V., & Videnovi, Ž. Long term effects of different tillage systems influencing yield and energy efficiency in maize (Zea mays L.). Poljoprivredna tehnika, 2011. 36(1), 97–104.
25. Videnović, Ž., Simić, M., Srdić, J., & Dumanović, Z. Long term effects of different soil tillage systems on maize (Zea mays L.) yields. Plant, Soil and Environment, 2011. 57(4), 186–192. URL: https://doi.org/10.17221/443/2010-PSE.
26. Simić, M., Dragičević, V., Mladenović Drinić, S., Vukadinović, J., Kresović, B., Tabaković, M., & Brankov, M. The contribution of soil tillage and nitrogen rate to the quality of maize grain. Agronomy, 2020. 10(7), 976. URL: https://doi.org/10.3390/agronomy10070976.
27. Burtan, L., Ţopa, D., Jităreanu, G., Calistru, A.E., Răus, L., Cara, I.G., Sîrbu, C., & Cioroianu, T. The influence of conservative tillage systems on physico-chemical properties and yield under a cambic chernozem from northeastern part of Romania. Romanian agricultural research, 2020. 37, 141–149.
28. Коваленко І.М., Масик І.М. Вплив технології вирощування кукурудзи на зерно на урожайність та економічну ефективність в умовах Лівобережного Лісостепу України. Таврійський науковий вісник. Серія: Сільськогосподарські науки». 2018. № 99. С. 67–76.
29. Масик І.М., Захарченко Е.А. Продуктивність та економічна ефективність вирощування кукурудзи на зерно за різних систем основного обробітку ґрунту в умовах Лівобережного Лісостепу України. Вісник Харківського національного аграрного університету імені В.В. Докучаєва. Серія: Ґрунтознавство, агрохімія, землеробство, лісове господарство, екологія ґрунтів, 2017. № 1. С. 146–154.
30. Масик І.М., Коплик Т.С., Рогіз О.Є., Попко В.П., Надольний Р.Г. Деякі технологічні аспекти вирощування кукурудзи на зерно в умовах Лівобережного Лісостепу України. Education and science of today: intersectoral issues and development of sciences, 2021. № 2. С. 16–18. URL: https://doi.org/10.36074/logos-19.03.2021.v2.03.
31. Тараненко С.В., Чайка Т.О., Тюпка Я.М. Агроекономічна ефективність різних способів основного обробітку ґрунту на посівах кукурудзи. Вісник Полтавської державної аграрної академії. 2019. № 4. С. 66–72. URL: https://doi.org/10.31210/visnyk2019.04.08.
32. Маслійов С.В., Маслійов Є.С., Циганкова Н.А., Рудаков В.С. Ріст, розвиток і врожайність цукрової кукурудзи залежно від видів основного обробітку ґрунту. Вісник Полтавської державної аграрної академії. № 2020(4). С. 53–60. URL: https://doi.org/10.31210/visnyk2020.04.06.
33. Dai, Z., Hu, J., Fan, J., Fu, W., Wang, H., & Hao, M. (2021). No-tillage with mulching improves maize yield in dryland farming through regulating soil temperature, water and nitrate-N. Agriculture, Ecosystems & Environment, 309, 107288. URL: https://doi.org/10.1016/j.agee.2020.107288.
34. Li, S., Wu, X., Liang, G., Gao, L., Wang, B., Lu, J., Abdelrhman, A. A., Song, X., Zhang, M., Zheng, F., & Degré, A. Is least limiting water range a useful indicator of the impact of tillage management on maize yield? Soil and Tillage Research, 2020. 199, 104602. URL: https://doi.org/10.1016/j.still.2020.104602.
35. Liu, D., Zhang, X., & Wang, X. Effects of different tillage patterns on soil properties, maize yield and water use efficiency in Weibei Highland, China. The Journal of Applied Ecology, 2018. 29(2), 573–582. URL: https://doi.org/10.13287/j.1001-9332.201802.023.
36. Bramdeo, K., & Rátonyi, T. Effect and interaction of crop management factors and crop year on the yield of maize (Zea mays L.). Acta Agraria Debreceniensis, 2020. 2, 31–41. https://doi.org/10.34101/ACTAAGRAR/2/7406.
37. Bramdeo, K., & Rátonyi, T. Effect of tillage and fertiliser treatments on yield of maize (Zea mays L.) hybrids. Columella: journal of agricultural and environmental sciences, 2020. 7(1), 57–65. doi.org/10.18380/SZIE. COLUM.2020.7.1.57.
38. Давиденко Г.А. Порівняльна оцінка технологій прямого висіву і стрип-тіллу при вирощуванні кукурудзи на зерно в умовах СТОВ Дружба-Нова Варвинського району Чернігівської області. Вісник Сумського національного аграрного університету. Серія: Агрономія і біологія. 2017. № 9. С. 32–38.
39. Vanden Nest, T., & Ruysschaert, G. Strip-till for maize in sandy loam soils: Importance of tillage depth, preceding cover crops and fertilization technique. In H. Boizard, & J. Roger-Estrade (Eds.). Proceedings of the 21th ISTRO International Conference. 2018. С. 66–67.
40. Shen, Y., Zhang, T., Cui, J., Chen, S., Han, H., & Ning, T. Subsoiling increases aggregate-associated organic carbon, dry matter, and maize yield on the North China Plain. PeerJ, 2021. 9, e11099. URL: https://doi. org/10.7717/peerj.11099.
41. Memon, S. Q., Mirjat, M. S., Mughal, A. Q., & Amjad, N. Effects of different tillage and fertilizer treatments on growth and yield components of maize. Pak. J. Agri., Agril. Engg., Vet. Sci, 2012. 28(2), 160–176.
42. Feng, X., Hao, Y., Latifmanesh, H., Lal, R., Cao, T., Guo, J., Deng,, A., Song, Z., & Zhang, W. Effects of subsoiling tillage on soil properties, maize root distribution, and grain yield on mollisols of Northeastern China. Agronomy Journal, 2018. 110(4), 1607–1615. URL: https://doi.org/10.2134/agronj2018.01.0027.
43. Potratz, D.J., Mourtzinis, S., Gaska, J., Lauer, J., Arriaga, F.J., & Conley, S.P. Strip-till, other management strategies, and their interactive effects on corn grain and soybean seed yield. Agronomy Journal, 2020. 112(1), 72–80. URL: https://doi.org/10.1002/AGJ2.20067.
44. Todorova, N., & Stratieva, S. Effect of Irrigation, Fertilization, Soil Tillage and Some Other Factors on Maize Yield. Proceeding of BALWOIS 2008 Conference on Water Observation and Information System for Decision Support. Ohrid, Republic of Macedonia, 2008. 27–31.
45. Zakharchenko, E.A., & Mishchenko, Y.H. (2017). Impact of different tillage practices and green manure on physical properties of Chernozem soil. Degradation and revitalization of soil and landscape : proceedings : International conference, (10-13 September 2017). Czech Republic : Palacky University in Olomouc, 51.
46. Wang, S., Guo, L., Zhou, P., Wang, X., Shen, Y., Han, H., Ning, T., & Han, K. Effect of subsoiling depth on soil physical properties and summer maize (Zea mays L.) yield. Plant, Soil and Environment, 2019. 65, 131–137. URL: https://doi.org/10.17221/703/2018-PSE.
47. Li, J., Wang, Y., Guo, Z., Li, J., Tian, C., Hua, D., Shi, C., Wang, H., Han, J., & Xu, Y. Effects of Conservation Tillage on Soil Physicochemical Properties and Crop Yield in an Arid Loess Plateau, China. Sci Rep, 2020. 10, 4716. URL: https://doi.org/10.1038/s41598-020-61650-7.
48. Wang, H., Wang, L., Gao, W., & Ren, T. Temporal Changes of Soil Physical Properties in Maize Growing Season as Affected by Long-term Tillage Treatments in Northeast China. Proceedings of the 21th ISTRO International Conference, 2018. 68–69.
49. Jaskulska, I., Romaneckas, K., Jaskulski, D., & Wojewódzki, P. A Strip-Till One-Pass System as a Component of Conservation Agriculture. Agronomy, 2020. 10(12), 2015. URL: https://doi.org/10.3390/agronomy10122015.
50. Jaskulska, I., Romaneckas, K., Jaskulski, D., Gałęzewski, L., Breza-Boruta, B., Dębska, B., & Lemanowicz, J. Soil properties after eight years of the use of strip-till one-pass technology. Agronomy, 2020. 10(10), 1596. URL: https://doi.org/10.3390/agronomy10101596.
51. Захарченко Е.А., Дацько О.М. Вміст легкогідролізованого азоту та структурність грунту за різних способів основного обробітку грунту. Вісник Сумського національного аграрного університету. Серія. «Агрономія і біологія». 2018. № 9(36). С. 119–124.
52. Alori, E.T., Adekiya, A. O., & Adegbite, K.A. Impact of Agricultural Practices on Soil Health. In A. Varma & B. Giri (Eds.), Soil Health. 2020. 89–98. Springer International Publishing. URL: https://doi.org/10.1007/978-3-030-44364-1.