Results of recent studies of soil varieties in Antarctica. A review

Keywords: Antarctica, soil substrates, factors of influence, nutritional regime, microbial cenosis, chemical properties, ecological condition, forecast

Abstract

Antarctica is not represented on almost all soil maps of the world. Meanwhile, on this continent there are not only soils, but even serve the laws of their latitudinal zonation. This means that the soils of warm coasts are very different from the soils of frosty inland areas. However, high-grade soils are represented here only by rare small areas among the stony placers of the mainland. Antarctic soil substrates are diverse and occupy scanty areas across the continent. Their uniqueness provides great opportunities to study fundamental environmental problems. These environments change very slowly over millennia, to the extent that the continent's glacial conditions affect them. However, the effects of global warming, anthropogenic factors and wildlife have increased in recent decades on the Antarctic environment. This situation is primarily reflected in the areas not covered by ice, in particular on soil differences in the characteristics of certain Antarctic biogeographical zones. The use of modern research methods makes it possible to effectively study the various properties of individual soil environments, which allows us to trace the direction of their evolution over time. To understand the driving forces of the development of different microbial groups, it is necessary to carry out a systematic quantitative assessment of the chemical composition of soils and the peculiarities of changes in the relevant biochemical cycles. Such monitoring, in turn, will allow to build forecast models of ecological situation development in different regions of the continent under the influence of external variables factors. After all, in the presence of fragmentary and incomplete research results of a number of Antarctic soils, analysts do not have enough quantitative estimates needed to substantiate such predictions.

References

1. Convey P. Antarctic ecosystems. In: Levin SA, editor. Encyclopedia of Biodiversity. 2nd ed. San Diego, CA, USA: 2013. pp. 179–188.
2. Cowan D.A. Microbiology of Antarctic Soils. Springer. Berlin/Heidelberg, Germany: 2014. 328 p.
3. Walther G. R., Eric Post E., Convey P., Menzel A., Parmesan C., Beebee T., Fromentin J., Hoegh-Guldberg O., Bairlein F. Ecological responses to recent climate change// Nature. 2002. V. 416. P. 389–395. doi: 10.1038/416389a
4. Walton D.W.H., Thomas J. Cruise Report-Antarctic Circumnavigation Expedition (ACE) 20th December 2016-19th March 2017. OpenAIRE;
5. Dennis P.G., Newsham K.K., Rushton S.P., O'Donnell A.G., Hopkins D.W. Soil bacterial diversity is positively associated with air temperature in the maritime Antarctic. Sci. Rep. 2019 ; 9 : 2686. DOI: 10.1038 / s41598-019-39521-7.
6. Simmons B.L., Wall D.H., Adams B.J., Ayres E., et al. Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biol. and Biochem. 2009. 41, 2052–2060. DOI: 10.1016 / j.soilbio.2009.07.009
7. Pointing S.B., Chan Y., Lacap D.C., Lau MC.Y., Jurgens J.A., Farrell R.L. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl. Acad. Sci. USA. 2009; 106 : 19964–19969. DOI: 10.1073 /pnas.0908274106.
8. De Scally S.Z., Makhalanyane T.P., Frossard A., Hogg I.D., Cowan D.A. Antarctic microbial communities are functionally redundant, adapted and resistant to short term temperature perturbations. Soil Biol. Biochem. 2016; 103: 160–170. DOI: 10.1016/j.soilbio.2016.08.013.
9. Nylen T.H., Fountain A.G. Climatolotogy of katabatic winds in the McMurdo Dry Valleys, Antarctica. J.Geophs. Res. 2004; 109 :D03114. DOI: 10.1029/ 2003JD003937.
10. Han J., Jung J., Park M., Hyun S., Park W. Shortterm effect of elevated temperature on the abundance and diversity of bacterial and archaeal amoA genes in antarctic soils. J. Microbiol. Biotechnol. 2013; 23: 1187–1196. DOI: 10.4014/ jmb.1305.05017.
11. Adriaenssens E.M., Kramer R., Van Goethem M.W., Makhalanyane T.P., Hogg I., Cowan D.A. Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome. 2017;5:83. doi: 10.1186/s40168-017-0301-7.
12. Falkowski P.G., Godfrey L.V. Electrons, life and the evolution of Earth's oxygen cycle. Philos. Trans. R. Soc. London / In Biol. Sci. 2008; 363 : 2705–2716. DOI: 10.1098 / rstb.2008.0054.
13. Ayton J., Aislabie J., Barker G.M., Saul D., Turner S. Crenarchaeota affiliated with group 1.1 b are prevalent in coastal mineral soils of the Ross Sea region of Antarctica. Environ. Microbiol. 2010;12:689–703. doi: 10.1111/j.1462-2920.2009.02111.x.
14. McCaig A.E., Phillips C.J., Stephen J.R., Kowalchuk G.A., Harvey S.M., Herbert R.A., Embley T.M., Prosser J.I. Nitrogen cycling and community structure of proteobacterial beta-subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl. Environ. Microbiol. 1999;65:213–220. doi: 10.1128/AEM.65.1.213-220.1999.
15. Bottos E.M., Laughlin D.C., Herbold C.W., Lee C.K., McDonald I.R., Cary S.C. Abiotic factors influence patterns of bacterial diversity and community composition in the Dry Valleys of Antarctica. FEMS Microbiol. Ecol. 2020;96:fiaa042. doi: 10.1093/femsec/fiaa042.
16. Cain M.L., Subler S., Evans J.P., Fortin M.-J. Sampling spatial and temporal variation in soil nitrogen availability. Oecologia. 1999; 118 : 397–404. DOI: 10.1007 / s004420050741.
17. Knops J.M.H., Tilman D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology. 2000; 81 : 88–98. DOI: 10.1890 / 0012-9658 (2000) 081.
18. Evans S.E., Wallenstein M.D. Climate change alters ecological strategies of soil bacteria. Ecol. Lett. 2014. 17, 155–164. DOI: 10.1111 / ele.12206.
19. Marco D., ed. (2011). Metagenomics: Current Innovations and Future Trends. Caister Academic Press. ISBN 978-1-904455-87-5.
20. DillB.D.,et al. "Metaproteomics: Techniques and Applications". Environmental Molecular Microbiology. Caister Academic Press. 2010. ISBN 978-1-904455-52-3.
21. Yau S., Lauro F.M., Williams T.J., DeMaere M.Z., et al. Metagenomic insights into strategies of carbon conservation and unusual sulfur biogeochemistry in a hypersaline Antarctic lake. The ISME. 2013. 7, 1944–1961. DOI:10.1038/ ismej.2013.69
22. Coyne K.J., Parker A.E., Lee C.K., Sohm J.A., Kalmbach A., Gunderson T., León-Zayas R., Capone D.G., Carpenter E.J., Cary S.C. The distribution and relative ecological roles of autotrophic and heterotrophic diazotrophs in the McMurdo Dry Valleys, Antarctica. FEMS Microbiol. Ecol. 2020; 96:fiaa010. doi: 10.1093/femsec/fiaa010.
23. Asuming-Brempong S. Microarray Technology and Its Applicability in Soil Science – A Short Review. J. Soil Sci. 2012; 2 : 333–340. DOI: 10.4236/ ojss.2012.23039.
24. Lee C.K., Laughlin D.C., Bottos E.M., Caruso T., Joy K., Barrett J.E., Hopkins D.W., Pointing S.B., McDonal I.R., Cowan D.A., et al. Biotic interactions are an unexpected yet critical control on the complexity of an abiotically driven polar ecosystem. Commun. Biol. 2019;2:62. doi: 10.1038/s42003-018-0274-5.
25. Bottos E.M., Laughlin D.C., Herbold C.W., Lee C.K., McDonald I.R., Cary S.C. Abiotic factors influence patterns of bacterial diversity and community composition in the Dry Valleys of Antarctica. FEMS Microbiol. Ecol. 2020;96:fiaa042. doi: 10.1093/femsec/fiaa042.
26. Bokhorst S., Convey P., Aerts R. Nitrogen inputs by marine vertebrates drive abundance and richness in Antarctic terrestrial ecosystems. Curr. Biol. 2019; 29 : 1721–1729. DOI: 10.1016 / j.cub.2019.04.038.
27. Winton V.H.L., Ming A., Caillon N., Hauge L., Jones A.E., Savarino J., Yang X., Frey M.M. Deposition, recycling and archival of nitrate stable isotopes between the air-snow interface: Comparison beteen Dronning Maud Land and Dome C, Antarctica. Atmos. Chem. Phys. 2020;20:5861–5885.doi: 10.5194/acp-20-5861-2020.
28. Lepane V., Künnis-Beres K., Kaup E., Sharma B. Dissolved organic matter, nutrients, and bacteria in Antarctic soil core from Schirmacher Oasis. J. Soils and Sediments. Springer. 2018; 18:2715-2726. DOI: 10.1007 / s11368-018-1913-7.
29. Makhalanyane T.P., Valverde A., Velázquez D., Gunnigle E., Van Goethem M.W., Quesada A., Cowan D.A. Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodivers. Conserv. 2015; 24 : 819–840. DOI: 10.1007 / s10531-015-0902-z.
30. Leininger S., Urich T., Schloter M., Schwark L., Qi J., Nicol G.W., Prosser J.I., Schuster S.C., Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–809. doi: 10.1038/nature04983.
31. Nylen T.H., Fountain A.G. Climatolotogy of katabatic winds in the McMurdo Dry Valleys, Antarctica. J. Geophs. Res. 2004; 109 : D03114. DOI: 10.1029 / 2003JD003937.
Published
2022-03-03
Section
MELIORATION, ARABLE FARMING, HORTICULTURE