Prediction of alkalinization processes in soils under drip irrigation for perennial plantations
Abstract
Purpose. To evaluate forecasting methods and processes of soil alkalinization with different granulometric structures, which have been irrigated by drip irrigation in southern Ukraine for 20 years. Methods. Analytical, field, and laboratory experiments, systems analysis, and methods of mathematical statistics. Results. The manuscript systematizes the results obtained during many years of personal observations on changes in the soil absorption complex (SAC) and alkalinization soil processes of southern chernozem, dark chestnut, sod, and meadow-chernozem soils with different soil structure under drip irrigation. The experiment was established in 2009 on perennial fruit crops. Fertilizers (organo-mineral (Rost-concentrate), mineral (N120P30-90K75-120), and organic (Gumoplant)) were applied with drip irrigation of different water quality, and soil field moisture capacity was in the range of 75-90%, depending on the soil structure. Predictive models of soil behavior according to the scenario have been developed when the drip irrigation regimes, soil fertilization systems, and irrigation water quality remain constant. Changes in the SAC of the soils are characterized, and prognostic models up to 8 years have been developed for them. On the example of southern heavy loam chernozem, which was irrigated of the partially suitable water for irrigation, the forecasting results as a holistic system depending on different scenarios of anthropogenic load – irrigation norms, fertilization systems is presented in more detail. Through spatial modeling, the distribution of alkalinization soils in time and space is constructed, which can be further used to create a conceptual model for determining the danger of these processes in the soilplant system. Findings. It was established that under the influence of different quality water and fertilizers in locally moist soils, alkalinizetion processes developed differentiated. In quantitative terms, soil capacity changed slowly during the forecast period, especially in heavy loam soils. Changes in sandy and medium loam soils were almost imperceptible.
References
2. Медведєв В.В., Пліско І.В. Прогнозування у ґрунтознавстві. Харків : ТОВ «Смугаста типографія», 2018. 170 с.
3. Экологическое нормирование и управление качеством почв и земель / под общ. ред. С.А. Шобы, А.С. Яковлева, Н.Г. Рыбальского. Москва : НИА-Природа, 2013. 310 с.
4. Vereecken H., Schnepf A., Hopmans Jan W. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone Journal. 2015. № 15(5). С. 1–57. URL: https://doi.org/10.2136/vzj2015.09.0131.
5. Медведев В.В. Неоднородность почв и точное земледелие. Часть 1. Введение в проблему. Харків : «Издание 13 типография», 2007. 296 с.
6. Hanson B., Simunek J. Leaching with subsurface drip irrigation under saline, shallow groundwater conditions. Vadose Zone J. 2008. № 7. Р. 810–818. URL: https://doi.org/10.2136/vzj2007.0053.
7. Балюк С.А., Носоненко А.А. Классификация почв Украины за степенью засоления, осолонцевания и лужностью. Москва : Почвоведение. 2008. Т. 9, № 3-4. С. 27–32.
8. Лозовицкий П.С. Изменение свойств темно-каштановой почвы в условиях длительного орошения на Каховской оросительной системе. Москва : Почвоведение. 2005. № 5. С. 620–633.
9. Лозовицкий П.С., Камленюк С.М. Изменение свойств южных черноземов при длительном орошении минерализованными водами. Москва : Почвоведение. 2001. № 4. С. 478–495.
10. Neilsen G.H., Neilsen, D., Peryea F. Response of soil and irrigated fruit trees to fertigation or broadcast application of Nitrogen Phosphorus and Potassium. Horttechnology. 1999. vol. 9, № 3. Р. 393–401.
11. Микайылов Ф. Моделирование некоторых почвенных процессов. Вестик Алтайского государственного аграрного университета. 2014. № 7(117). С. 59–64.
12. Голованов А.И., Кучер Д.Е., Шуравилин А.В. Обоснование математической модели капельного увлажнения сада в условиях Подмосковья. Природообустройство. 2016. № 1. С. 44–51.
13. Цветков В.Я. Пространственное моделирование в геоинформатике. Международный журнал прикладных и фундаментальных исследований. 2016. № 4–3. С. 646–646. URL: https://applied-research.ru/ru/article/view? id=9040 (дата звернення: 24.04.2021).
14. Yaser Ostovari, Shoja Ghorbani-Dashtaki, Lalit Kumar & Farzin Shabani. Soil erodibility and its prediction in semi-arid regions. Journal Archives of Agronomy and Soil Science. 2019. Volume 65. Issue 12 URL: https://doi.org/10. 1080/03650340. 2019.1575509.
15. Організація систем режимних спостережень для оцінки екологомеліоративного стану земель в умовах мікрозрошення : методичний посібник / За ред. М.І. Ромащенка. Київ : ТОВ «ДІА». 2004. 42 с.
16. R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2009. URL: http://www.R-project.org (дата звернення 01.05.2021).
17. Ахмедов А.Д., Темерев А.А., Галиуллина Е.Ю. Динамика увлажнения почвы при капельном поливе садов. Известия Нижневолжского агроуниверситетского комплекса: наука и высшее профессиональное образование. 2011. № 2(22). С. 159–164.
18. Попова В.П., Фоменко Ф.Г. Изменение свойств черноземов Северного Кавказа при капельном орошении плодовых насаждений : доклады РАСХН, 2012. № 3. С. 37–40.
19. Фоменко Т.Г., Попова В.П. Результаты мониторинга физико-химических свойств чернозема обыкновенного в плодовых насаждениях при капельном орошении. Научные труды ГНУ СКЗНИИСиВ. 2013. Т. 3. С. 42–49.