The transpiration coefficient of tomato depending on the granulometric composition of soils

  • O.V. Zhuravlov Institute of Water Problems and Land Reclamation of the National Academy of Agrarian Sciences of Ukraine
  • A.P. Shatkovskyi Institute of Water Problems and Land Reclamation of the National Academy of Agrarian Sciences of Ukraine
  • F.S. Melnychuk State Enterprise "Central Laboratory of Water and Soil Quality" of the Institute of Water Problems and Land Reclamation of the National Academy of Agrarian Sciences of Ukraine
  • Yu.O. Cherevychny Institute of Water Problems and Land Reclamation of the National Academy of Agrarian Sciences of Ukraine
Keywords: tomato, transpiration coefficient, transpiration productivity, leaf surface area, particle size distribution of soils

Abstract

Purpose – to investigate and determine the granulometric compositions of soils effect on the transpiration coefficient of tomato plants. Methods. The research was carried out according to the methods of vegetation research I.K. Kirshina using analytical and statistical methods for processing experimental data. Research results. The transpiration parameters of seedling tomato plants are considered as an assessment criterion for the water demand of a plant at a certain stage of its development in order to optimize the irrigation management process. Field experimental vegetation studies were carried out on the lands of the Experimental farm “SE “Brylivske” IWPaLM NAAS during 2016–2020. The obtained results confirm that the granulometric composition of the soil significantly affects the physiological processes of tomato plants: the formation of basic biometric parameters, structural elements and parameters of transpiration processes, and so on. It has been established that the maximum water consumption for transpiration of a tomato plant corresponds to the interfacial period of “flowering–fruit formation”. At the same time, as plants grow and develop, the transpiration rate decreases. Thus, before flowering, depending on the particle size distribution of soils, the transpiration coefficient was 186,2–202,2 g/g, and at the beginning of fruit ripening, this parameter decreased to 159,8–157,6 g/g. It is determined that the tendency of dynamic changes of the transpiration productivity parameter mirrored the tendency of changes of the transpiration coefficient of tomato plants. Conclusions. The maximum values of the transpiration coefficient were recorded from planting seedlings to flowering, and in the interfacial period of “fruit formation-ripening” its parameters decreased. According to the results of correlation-regression analysis, the functional dependence of the dry matter accumulation of tomato plants on its leaf surface area was established. It is determined that depending on the particle size distribution of soils the transpiration coefficient of tomato plants has a steady tendency to decrease with increasing content of physical clay in the soil.

References

1. Макрушин М.М., Макрушина Є.М., Петерсон Н.В., Мельников М.М. Фізіологія рослин. Вінниця : Нова Книга, 2006. 416 с.
2. Скляр В.Г., Злобін Ю.А. Екологічна фізіологія рослин. Суми : Університетська книга, 2015. 271 с.
3. Мусієнко М.М. Фізіологія рослин. Київ : Либідь, 2005. 808 с.
4. Ромащенко М.І. Шатковський А.П., Рябков С.В. Краплинне зрошення овочевих культур і картоплі в умовах Степу України. Київ : ДІА, 2012. 248 с.
5. Посівні площі сільськогосподарських культур за їх видами у 2020 році. Державна служба статистики України : вебсайт. URL : http://www.ukrstat.gov.ua/(дата звернення: 12.03.2021).
6. Полуэктов Р.А., Нагиев А.Т., Шукуров М.Ш., Мирзоев Ф.А. Расчет транспирации и испарения в динамической модели агроэкосистемы. Известия Национальной академии наук Азербайджана. 2004. № 2. С. 248–254.
7. Полуэктов Р.А., Кумаков В.А., Василенко Г.В. Моделирование транспирации посевов сельскохозяйственных культур. Физиология растений. 1997. Том. 44. № 1. С. 68–73.
8. Eric A., Fisher J., Zamir D., Jocelyn R. Transpiration from Tomato Fruit Occurs Primarily via Trichome-Associated Transcuticular Polar Pores. Plant Physiology. 2020. Volume 184. Issue 4, P. 1840–1852. URL: https://doi.org/10.1104/pp.20.01105.
9. Jolliet O., Bailey B. The effect of climate on tomato transpiration in greenhouses: measurements and models comparison. Agricultural and Forest Meteorology. 1992. Volume 58. Issues 1–2. P. 43–62. URL: https://doi.org/10.1016/0168-1923(92)90110-P.
10. Shirazi1 A., Measuring С. Transpiration Rates of Tomato. HortScience. 1993. Vol. 28(10). Р. 1035–1038.
11. Киршин И.К. Методика эксперимента: вегетационный метод. Свердловск : УрГУ, 1989. 56 с.
12. Ничипорович А.А. Власова М.П. О формировании и продуктивности фотосинтетического аппарата различных культурных растений в течение вегетационного периода. Физиология растений. 1961. Т. 8. № 1. С. 56–64.
13. Третьяков Н.Н. Практикум по физиологии растений. Москва : Агропромиздат, 1990. 271 с.
14. Ушкаренко В.О., Вожегова Р.А., Голобородько С.П., Коковіхін С.В. Методика польового досліду (зрошуване землеробство). Херсон : Грінь Д.С., 2014. 448 с.
Published
2021-03-28
Section
MELIORATION, ARABLE FARMING, HORTICULTURE