Impact of meteorological conditions on yield of winther wheat, maize and winter oil seed rape with using nitrification inhibitor with combined application with UAN-32

Keywords: temperature, precipitation and evaporation, sum of active temperature, productivity, urea-ammonia solution

Abstract

Purpose. To defined impact of meteorological conditions such as temperature, precipitation and evaporation and sum of active temperature on yield of winter wheat, maize and winter oil seed rape with using nitrification inhibitor 3,4‑dimethylpyrazole phosphate applied together with different dosages of urea-ammonia solution (UAN-32). Methods. During 20182021, research was conducted in the conditions of the “Druzhba Nova” scientific research center of the Varvinsky District, Chernihiv Region (department of the Kernel agricultural holding) on typical low-humus black soil. One-factor experiment. Control was N10P30K40 (conditionally without nitrogen fertilizers). UAN-32 with dosages according variant of experiments, nitrification inhibitor 3,4‑dimethylpyrazole phosphate was applied on spring after vegetation recovery, experiment variants accordingly (control+N100+NI, control+N120+NI, control+N120, control+N120+NI, control+ N130+NI та control+N130). Results. According experiment results on the period from March to April in 2018 and 2019 years was detected sharp average daily temperature increase from -3,4 0С and 3,3 0С up to 11,3 0С and 10,4 0С. The total sum of active temperature in 2018 was on the highest level and set up in 2321,9 0С in September on vegetation finishing. The total sum of precipitation was on the highest level in 509,9 mm on September 2019 on the end of vegetation on years of research. On 2018–2021 years of research the highest yield of winter wheat was in 2018 on variant of experiment 37,2 c/ha, 80,0 c/ha, 81,4 c/ha and 74,0 c/ha. Relatively lower was yield in 2020 on variants of experiment 37,7 c/ha, 72,0 c/ha, 72,5 c/ha and 68,5 c/ha accordingly. The highest yield was in 2018 and 2021 on maize and set up on variants of experiment in 2018 as 86,0 c/ha, 110,2 c/ha, 105,6 c/ha and 99,7 c/ha and in year of 2021 85,7 c/ha, 111,9 c/ha, 99,5 c/ha and 97,7 c/ha. Yield of maize was the lowest in 2019 and 2020 and was relatively on the same level in those two years. Yield of winter oil seed rape was on the highest level in 2018 in comparison with 2020 and 2021 and set up on variants of experiment as 31,2 c/ha, 37,0 c/ha 38,5 c/ha and 34,5 c/ha. There was no experiments conducted on winter oil seed rape in 2019. Conclusions. Results of experiment in 2018–2021 on using nitrification inhibitor applied together with different dosages of UAN-32 shown that the highest yield was detected on winter wheat in 2018 (37,2–81,4 c/ha), on maize (86,0–110,2 c/ha) and on winter oil seed rape (31,2–38,5 c/ha). The highest yield in 2018 on all researched crops is highly correlated with sum of active temperatures which was the highest in researched years in 2321,90С on the end of vegetation in September.

References

1. Office of Research and Development National Center for Environmental Assessment. Integrated science assessment for oxides of nitrogen – Health criteria. North Carolina: United States Environmental Protection Authority, 2016. EPA/600/R-15/068.
2. Cheremisinoff, P. N., Young R.A., Air Pollution Control and Design Handbook. s.l.: M Dekker, 1977. Vol. 2. P. 672–673.
3. Boulter, P.G, Borken-Kleefeld, J., Ntziachristos, L., Vianna M. Urban Air Quality in Europe. Berlin Heidelberg: Springer-Verlag, Handbook of Environmental Chemistry. 2013. Vol. 26. P. 31–54.
4. Панченко Л.С., Букін Є.В., Комарова Л.А., Желтоножський В. А. Еколого-економічний аналіз використання азотних добрив у виробництві кукурудзи в Україні. Аграрний вісник Дніпропетровської області, 2018. т.1, № 64. С. 67–72.
5. Xu G., Fan X., Miller A. J. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology. 2012. Vol. 63. P. 153–182.
6. Chunlian Q., Lingli L., Shuijin H. еt al. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biology. 2015. Vol. 21, No.3–5. P. 1249–1257. doi: 10.1111/gcb.12802.
7. Legg J. O., Allison F. E. A tracer study of nitrogen balance and residual nitrogen availability with 12 soils. Soil Sei. Soc. Amer. Proc. 1967. Vol. 31, No. 3. P. 403–406.
8. Commission regulation (EU) № 1257/2014 amending Regulation (EC) No. 2003/2003 of the European Parliament and of the Council relating to fertilizers for the purposes of adapting Annexes I and IV. 2014. P. 12.
9. Pachauri R. K., Raizinher A. IPCC, 2007: Climate change, 2007: General report. Contribution of working groups I, II, III in forth report on evaluation of Intergovernmental experts group on climate change. IPCC, Geneva, Switzerland, 2007. 104 p.
10. Тараріко О.Г., Сиротенко О.В., Ільєнко Т.В., Величко В.А. Космічний моніторинг посушливих явищ. Вісник аграрної науки, 2012. № 10. С. 16–20.
11. Мюллер Д., Юнгандреас А., Кох Ф. Вплив кліматичних змін на виробництво пшениці в Україні. Німецько-український агрополітичний діалог. Київ, 2016. 45 с.
12. Грицюк П. М., Бачишина Л. Д. Вплив зміни кліматичних умов на динаміку врожайності зернових в Україн. Економіка України, 2016, № 6 (655). С. 68–75.
13. Asseng, S, Foster, I., Turner, N. C. The impact of temperature variability on wheat yields. Glob. Change Biol. 2011. Vol. 17. P. 997–1012.
14. Кобченко Ю.Ф., Кобченко О.Ю., Резуненко В.А. Вплив погодних факторів на формування урожаю зернових культур у Харківській області. Вісник Харківського національного університету, 2014. № 1098. С. 86–91.
15. Ray, D.R.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate Variation Explains a Third of Global Crop Yield Variability. Nat. Commun. 2015. Vol. 6. P. 1–9.
16. Scealy, R.; Newth, D.; Gunasekera, D.; Finnigan, J. Effects of Variation in the Grains Sector Response of Climate Change: An Integrated Assessment. Econ. Pap. J. Appl. Econ. Policy. 2012. Vol. 31. P. 327–336.
17. Butler, E.E.; Huybers, P. Adaptation of US Maize to Temperature Variations. Nat. Clim. Chang. 2013. Vol. 3. P. 68–72.
18. Каленська С. М., Таран В. А. Індекс урожайності гібридів кукурудзи залежно від густоти стояння рослин, норм добрив та погодних умов вирощування. Вивчення та захист сортів рослин, 2018, т.14, № 4. С. 141–149.
19. Ma B. L., Dwyer L. M. Nitrogen management for improving corn yield and nitrogen use efficiency in cool, humid regions. Agronomy Journal. 2015. Vol. 107, No. 2, P. 779–788.
20. J. Lee, M. J. Connaughton. Effects of Weather on Wheat Yields. Irish Journal of Agricultural Research. 1969. Vol. 8, No. 3. P. 349–357.
21. Zhang, T., Zhu, J., Yang, X., Zhang, X. Correlation Changes between Rice Yields in North and Northwest China and ENSO from 1960 to 2004. Agric. For. Meteorol. 2008. Vol. 148. P. 1021–1033.
22. Zhang, T., Zhu, J., Wassmann, R. Responses of Rice Yields to Recent Climate Change in China: An Empirical Assessment Based on Long-term Observations at Different Spatial Scales (1981–2005). Agric. For. Meteorol. 2010. Vol.150. P. 1128–1137.
23. Evan, N., Butterworth, M.H., Baierl, A., Semenov, M.A.,West, J.S. The Impact of Climate Change on Disease Constraints on Production of OSR. Food Secur. 2010. Vol. 2. P. 143–156.
24. He, Y.Q., Leng, B.F., Feng, Z.C. The Impact of Climate Factors on OSR Production in Hubei, China by Using Translog Production Function. Res. Sci. 2015. Vol.37. P. 1465–1473.
25. Zhang, S. J., Wang, H. Z. Adaptation to Climate Change of Chinese OSR Production. Chin. J. Oil Crop Sci. 2012. Vol. 34. P. 114–122.
Published
2024-01-11
Section
MELIORATION, ARABLE FARMING, HORTICULTURE